6533b85efe1ef96bd12bfdcc
RESEARCH PRODUCT
New Insights into the Genome Organization of Yeast Killer Viruses Based on “Atypical” Killer Strains Characterized by High-Throughput Sequencing
Antonio López-piñeiroFrancisco J. RoigRocío VelázquezBelén NaranjoManuel RamírezCarlos Llorenssubject
0301 basic medicineRNA recombinationGenotypeHealth Toxicology and Mutagenesis030106 microbiologySaccharomyces cerevisiaelcsh:MedicineTorulaspora delbrueckiidsRNAGenome ViralSaccharomyces cerevisiaeToxicologyGenomeDNA sequencingArticle<i>Saccharomyces cerevisiae</i>; <i>Torulaspora delbrueckii</i>; killer; virus genome; dsRNA; sequencing; HTS; RNA recombination; phylogenetic originphylogenetic origin03 medical and health sciencesTorulaspora delbrueckiiGenomic organizationGeneticsbiologyPhylogenetic treelcsh:RHigh-Throughput Nucleotide SequencingTorulasporasequencingbiology.organism_classificationYeastTorulasporaKiller Factors Yeast030104 developmental biologyPhenotypevirus genomeVirusesRNA ViralHTSkillerdescription
Viral M-dsRNAs encoding yeast killer toxins share similar genomic organization, but no overall sequence identity. The dsRNA full-length sequences of several known M-viruses either have yet to be completed, or they were shorter than estimated by agarose gel electrophoresis. High-throughput sequencing was used to analyze some M-dsRNAs previously sequenced by traditional techniques, and new dsRNAs from atypical killer strains of Saccharomyces cerevisiae and Torulaspora delbrueckii. All dsRNAs expected to be present in a given yeast strain were reliably detected and sequenced, and the previously-known sequences were confirmed. The few discrepancies between viral variants were mostly located around the central poly(A) region. A continuous sequence of the ScV-M2 genome was obtained for the first time. M1 virus was found for the first time in wine yeasts, coexisting with Mbarr-1 virus in T. delbrueckii. Extra 5′- and 3′-sequences were found in all M-genomes. The presence of repeated short sequences in the non-coding 3′-region of most M-genomes indicates that they have a common phylogenetic origin. High identity between amino acid sequences of killer toxins and some unclassified proteins of yeast, bacteria, and wine grapes suggests that killer viruses recruited some sequences from the genome of these organisms, or vice versa, during evolution.
year | journal | country | edition | language |
---|---|---|---|---|
2017-09-19 | Toxins |