6533b85efe1ef96bd12bfeb4
RESEARCH PRODUCT
Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres
Justin D. HolmesJustin D. HolmesDonats ErtsDonats ErtsMichael A. MorrisMichael A. MorrisHaoshen ZhouKai-xue WangKai-xue WangPavels BirjukovsRichard PhelanRichard Phelansubject
Materials scienceAnodic oxidationPolymersCarbon nanofiberNanotechnologyGeneral ChemistryConductive atomic force microscopySurface active agentsPhenolic resinsNanostructuresTemplate reactionMembraneCarbon nanofibersPhenolsCopolymerizationSolsNanofiberCarbon fibersMaterials ChemistryCopolymerCarbide-derived carbonMesoporous materialdescription
A facile and reproducible one-step pathway has been developed for preparing ordered arrays of mesoporous carbon nanostructures within the pores of anodized aluminium oxide (AAO) membranes, through the confined self-assembly of phenol/formaldehyde resol and amphiphilic copolymer templates. The morphology of the mesoporous carbon nanostructures can be controlled by varying the copolymer surfactant, the quantity of the resol–surfactant precursor sol used and the amount of phenol–formaldehyde resol introduced into the resol–surfactant sol. One-dimensional (1-D) carbon nanostructures, such as carbon fibres with a core–shell structure and carbon ribbons with circular mesopores running parallel to the longitudinal axis of the ribbons, have been successfully prepared. More importantly, the orientation of the mesoporous channels within these 1-D carbon nanostructures can be tuned by changing the mean pore diameter of the AAO membranes and the surfactants used in their preparation. The conductive properties of these vertically aligned mesoporous carbon nanofibres within the AAO membranes have been characterised by conductive atomic force microscopy (C-AFM).
year | journal | country | edition | language |
---|---|---|---|---|
2009-01-27 | Journal of Materials Chemistry |