6533b85efe1ef96bd12bff40
RESEARCH PRODUCT
Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat
Jorge E. CastroMaria Isabel CorderoCarmen SandiEmilo VareaCristina MárquezGuillaume L. Poiriersubject
MaleLong-Term Potentiationlcsh:MedicineHippocampal formationElement-Binding ProteinAmygdala/*drug effects/physiopathologyHippocampusMemory FormationRats Sprague-Dawleyddc:616.890302 clinical medicineMedial Prefrontal CortexElevated Plus-MazeSerotonin Uptake Inhibitors/*pharmacologylcsh:ScienceBasolateral Amygdala0303 health sciencesMultidisciplinaryNeuroscience/Behavioral NeuroscienceDepressionNeurogenesisBLAAmygdalaImmunohistochemistryChronic FluoxetineAdult-RatNeuroscience/Psychologymedicine.anatomical_structureFluoxetine/*pharmacologyDepression/*pathologyAntidepressantAntidepressive Agents Second-GenerationSelective Serotonin Reuptake InhibitorsResearch ArticleEstrèsElevated plus mazemedicine.medical_specialtyAnimal-ModelAntidepressive Agents Second-Generation/*pharmacologyCell SurvivalAmygdala03 medical and health sciencesFluoxetineNeuroplasticityHippocampus/cytology/*drug effectsmedicineAnimalsPsychiatryMaze Learning030304 developmental biologyCell Proliferationbusiness.industryDentate gyrusMental Health/Mood Disorderslcsh:RBasolateral complex of the amygdaleRatsCell Proliferation/*drug effectsDentate Gyruslcsh:QCell Survival/*drug effectsbusinessNeuroscience030217 neurology & neurosurgeryBasolateral amygdaladescription
The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA), a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test). We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals). Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and -independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants' action in hippocampal neurogenesis and in their link to depression-like behaviors.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |