6533b85efe1ef96bd12c05ef

RESEARCH PRODUCT

Product Integration for Weakly Singular Integral Equations In ℝm

Ivan G. GrahamClaus Schneider

subject

CombinatoricsRegular singular pointClosure (mathematics)Product integrationImproper integralDomain (ring theory)Mathematical analysisSingular integralSummation equationOmegaMathematics

description

In this note we discuss the numerical solution of the second kind Fredholm integral equation: $$ y(t) = f(t) + \lambda \int\limits_{\Omega } {{{\psi }_{\alpha }}(|t - s|)g(t,s)y(s)ds,\;t \in \bar{\Omega },} $$ (1) Where \( \lambda \in ;\not{ \subset }\backslash \{ 0\} \) , the functions f,g are given and continuous, |.| denotes the Euclidean norm, and φα, 0 \alpha > 0} \\ {\left\{ {\begin{array}{*{20}{c}} {\ln (r),} & {j = 0} \\ {{{r}^{{ - j}}}} & {j > 0} \\ \end{array} } \right\},\alpha = m} \\ \end{array} ,} \right. $$ with Cj not depending on r. Here Ω _ is the closure of a bounded domain Ω⊂ℝm.

https://doi.org/10.1007/978-3-0348-9317-6_13