6533b85efe1ef96bd12c066b

RESEARCH PRODUCT

Zero Temperature Magnetoresistance of the HF Metal: Enigma of $$\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}$$

Vasily R. ShaginyanVladimir A. StephanovichMiron AmusiaKonstantin G. Popov

subject

PhysicsMetalResidual resistivityPhase boundaryCrystallographyMagnetoresistanceRestricted rangevisual_artvisual_art.visual_art_mediumFlat bandZero temperaturePhase diagram

description

To understand the nature of field-tuned metamagnetic quantum criticality in the ruthenate \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) is one of the significant challenges in the condensed matter physics. It is established experimentally that the entropy has a peak in the ordered phase. It is unexpectedly higher than that outside latter phase, while the magnetoresistivity varies abruptly near the ordered phase boundary. We demonstrate unexpected similarity between \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) and HF metals expressing universal physics that transcends microscopic details. Our \(T-B\) phase diagram of \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) explains main features of the experimental situation. It gives an unambiguous interpretation of its extraordinary low-temperature thermodynamics in terms of FCQPT, leading to the flat band formation at the restricted range of magnetic fields \(B\).

https://doi.org/10.1007/978-3-319-10825-4_11