fitforthem
about

scope and guide to the platform

—research groups

research groups network graph visualization

—repositories

catalog of the institutional repositories

—heritage

selection of collections, museum, cultural sites and ancient books

By continuing your visit to this site, you accept the use of essential cookies.

Read more
6533b85efe1ef96bd12c0739

RESEARCH PRODUCT

Truncated modules and linear presentations of vector bundles

Paolo LellaDaniele FaenziAda Boralevi

subject

Pure mathematicsRank (linear algebra)General Mathematics[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Vector bundle010103 numerical & computational mathematicsLinear presentationCommutative Algebra (math.AC)01 natural sciences[ MATH.MATH-AC ] Mathematics [math]/Commutative Algebra [math.AC]Mathematics - Algebraic GeometryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsPoint (geometry)MSC: 13D02 16W50 15A30 14J600101 mathematicsVector bundleAlgebraic Geometry (math.AG)MathematicsMathematics::Commutative Algebra010102 general mathematicsConstruct (python library)Graded truncated moduleMathematics - Commutative AlgebraInstanton bundleCohomology[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Matrix of co nstant rank[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Constant (mathematics)

description

We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one to produce several new examples, and provides an alternative point of view on the existing ones.

yearjournalcountryeditionlanguage
2018-09-01
http://arxiv.org/abs/1505.04204
EU flag

FORTHEM European University Alliance is co-funded by the European Union. FIT FORTHEM has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 101017248. The content of this website represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission.

University of Jyväskylä logoUniversity of Jyväskylä's websiteUniversity of Burgundy logoUniversity of Burgundy's websiteUniversity of Mainz logoUniversity of Mainz's websiteUniversity of Palermo logoUniversity of Palermo's websiteUniversity of Latvia logoUniversity of Latvia's website
University of Agder logoUniversity of Agder's websiteUniversity of Opole logoUniversity of Opole's websiteUniversity of Sibiu logoUniversity of Sibiu's websiteUniversity of València logoUniversity of València's website
FORTHEM logoFORTHEM alliance's website