6533b85efe1ef96bd12c07b5

RESEARCH PRODUCT

Formation of dibutyl carbonate and butylcarbamate via CO2 insertion in titanium(IV) butoxide and reaction with n-butylamine

Chiara DeianaMichele R. ChierottiGianmario MartraLeonardo PalmisanoFrancesco Parrino

subject

010405 organic chemistryChemistryProcess Chemistry and Technologyn-Butylaminechemistry.chemical_elementNuclear magnetic resonance spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesAdductHydrolysischemistry.chemical_compoundNucleophilePolymer chemistryChemical Engineering (miscellaneous)Organic chemistryReactivity (chemistry)Amine gas treatingSettore CHIM/07 - Fondamenti Chimici Delle TecnologieWaste Management and DisposalTitaniumDibutyl carbonate CO2 insertion Titanium alkoxides Carbamate

description

Abstract The species resulting from insertion of 12CO2 and 13CO2 into titanium(IV) butoxide is for the first time fully characterized by means of infrared and nuclear magnetic resonance spectroscopy. Results show formation of Ti-monobutylcarbonate, that easily undergoes nucleophilic attack by an aliphatic amine. The hydrolysis of the resulting species produces butylcarbamate and dibutylcarbonate as the only main products. Characterization results of the carbonate-like adduct, along with its reactivity with amine molecules open the route to new ways of CO2 utilization as building block for valuable organic compounds.

http://hdl.handle.net/10447/177432