6533b85efe1ef96bd12c095b

RESEARCH PRODUCT

White Paper on New Opportunities at the Next-Generation Neutrino Experiments (Part 1: BSM Neutrino Physics and Dark Matter)

C.a. ArgüellesA.j. AurisanoB. BatellJ. BergerM. BishaiT. BoschiN. ByrnesA. ChatterjeeA. ChodosT. CoanY. CuiA. De GouvêaP.b. DentonA. De RoeckW. FlanaganR.p. GandrajulaA. HatzikoutelisM. HostertB. JonesB.j. KayserK.j. KellyD. KimJ. KoppA. KubikK. LangI. LepeticP.a.n. MachadoC.a. MouraF. OlnessJ.c. ParkS. PascoliS. PrakashL. RogersI. SafaA. SchneiderK. ScholbergS. ShinI.m. ShoemakerG. SinevB. SmithersA. SousaY. SuiV. TakhistovJ. ThomasJ. ToddY.d. TsaiY.t. TsaiD.v. ForeroJ. YuC. Zhang

subject

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)hep-exPhysics::Instrumentation and DetectorsFOS: Physical scienceshep-phHigh Energy Physics::ExperimentParticle Physics - ExperimentParticle Physics - PhenomenologyHigh Energy Physics - Experiment

description

The combination of the high intensity proton beam facilities and massive detectors for precision measurements of neutrino oscillation parameters including the charge-parity violating (CPV) phase will open the door to help make beyond the standard model (BSM) physics reachable even in low energy regimes in the accelerator-based experiments. Large-mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable the searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is also conceivable that BSM topics in the next-generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continue to improve.This paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics—dark matter and neutrino related BSM—and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 to 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes. An important outcome of this paper is to ensure theoretical and simulation tools exist to carry out studies of these new areas of physics, from the first day of the experiments, such as Deep Underground Neutrino Experiment in the U.S. and Hyper-Kamiokande Experiment in Japan. With the advent of a new generation of neutrino experiments which leverage high-intensity neutrino beams for precision measurements, it is timely to explore physics topics beyond the standard neutrino-related physics. Given that the realm of beyond the standard model (BSM) physics has been mostly sought at high-energy regimes at colliders, such as the LHC at CERN, the exploration of BSM physics in neutrino experiments will enable complementary measurements at the energy regimes that balance that of the LHC. This is in concert with new ideas for high-intensity beams for fixed target and beam-dump experiments world-wide, e.g., those at CERN. The combination of the high intensity proton beam facilities and massive detectors for precision neutrino oscillation parameter measurements and for CP violation phase measurements will help make BSM physics reachable even in low energy regimes in accelerator based experiments. Large mass detectors with highly precise tracking and energy measurements, excellent timing resolution, and low energy thresholds will enable searches for BSM phenomena from cosmogenic origin, as well. Therefore, it is conceivable that BSM topics in the next generation neutrino experiments could be the dominant physics topics in the foreseeable future, as the precision of the neutrino oscillation parameter and CPV measurements continues to improve. In this spirit, this white paper provides a review of the current landscape of BSM theory in neutrino experiments in two selected areas of the BSM topics - dark matter and neutrino related BSM - and summarizes the current results from existing neutrino experiments to set benchmarks for both theory and experiment. This paper then provides a review of upcoming neutrino experiments throughout the next 10 - 15 year time scale and their capabilities to set the foundation for potential reach in BSM physics in the two aforementioned themes.

https://dx.doi.org/10.48550/arxiv.1907.08311