6533b85efe1ef96bd12c09ae
RESEARCH PRODUCT
Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered beta-galactosidase
Amparo López-rubioMaría José FabraDavid Talens-peralesBerta N. EstevinhoNuria SamaniegoJulia Marín-navarroJulia Marín-navarroJulio Polainasubject
0301 basic medicineImmobilized enzyme02 engineering and technologyProtein EngineeringBiochemistryBacterial cellulose03 medical and health sciencesHydrolysischemistry.chemical_compoundCarbohydrate binding moduleStructural BiologyEnzyme StabilityThermotoga maritimaCelluloseMolecular BiologyLactasechemistry.chemical_classificationbiologyGluconacetobacter xylinusHydrolysisMembranes ArtificialGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationEnzymes Immobilizedbeta-GalactosidaseEnzyme binding030104 developmental biologyEnzymeProtein immobilizationchemistryBiochemistryBacterial celluloseThermotoga maritimaPyrococcus furiosusCarbohydrate-binding module0210 nano-technologydescription
Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a β-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% lactose to a high extent. Reuse of the immobilized enzyme was limited by the stability of the β-galactosidase module, whereas the CBM2 module provided stable attachment of the hybrid enzyme to the BC support, after long incubation periods (3 h) at 75 °C.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |