6533b85ffe1ef96bd12c1af3
RESEARCH PRODUCT
Modelling and simulation of gas-liquid hydrodynamics in mechnically stirred tanks
Franco GrisafiA. D’orazioFrancesca ScargialiAlberto Brucatosubject
Work (thermodynamics)Terminal velocityGeneral Chemical EngineeringBubbleFLOWSettore ING-IND/25 - Impianti ChimiciBUBBLE-COLUMN REACTORSSINGLE BUBBLESComputational fluid dynamicsPhysics::Fluid DynamicsMomentumsymbols.namesakeControl theorySYSTEMSCFD SIMULATIONSPhysicsTurbulencebusiness.industryNUMERICAL SIMULATIONSGeneral ChemistryMechanicsVELOCITYEuler equationsDragVESSELsymbolsTURBULENCERUSHTON TURBINEbusinessdescription
Abstract Computational fuid dynamics (CFD) is an increasingly important tool for carrying out realistic simulations of process equipment. In the case of multiphase systems the development of CFD models is less advanced than for single-phase systems. In the present work CFD simulations of gas–liquid stirred tanks are reported. An Eulerian–Eulerian multi-fluid approach is used in conjunction with the simplest two-phase extension of the k–ɛ turbulence model. All bubbles are assumed to share the same size. The effect of inter-phase forces on simulation results is separately considered. As concerns drag, it is shown that the sole parameter needed to characterize the dispersed phase behaviour is bubble terminal velocity, a consideration that eases the estimation of the relevant term in the momentum equations and helps understanding the system physics. Despite the many simplifications adopted, results are found to be in satisfactory agreement with experiment.
year | journal | country | edition | language |
---|---|---|---|---|
2007-01-01 |