Search results for "FLOW"

showing 10 items of 5185 documents

Caractérisation cytomique de cellules transformées de tabacs exprimant le domaine « hub » de la chaîne lourde de la clathrine

2018

"hub" cells[SDV] Life Sciences [q-bio]shape coefficient[SDV]Life Sciences [q-bio]flow cytometryclathrin-mediated endocytosistobacco cellscryptogein
researchProduct

Re: Technique of internal mammary dissection using pectoralis major flap to prevent contour deformities

2009

* Anastomosis Surgical * Constriction Pathologic/prevention & control * Dissection * Esthetics * Female * Humans * Mammaplasty/methods* * Mammary Arteries/surgery* * Pectoralis Muscles/blood supply * Pectoralis Muscles/transplantation* * Postoperative Complications/prevention & control * Regional Blood Flow * Surgical Flaps/blood supply* * Treatment Outcome
researchProduct

Genome architecture enables local adaptation of Atlantic cod despite high connectivity

2017

Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single-nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show…

/dk/atira/pure/sustainabledevelopmentgoals/life_below_waterecological adaptationGadus morhuachromosomal inversionpopulation divergenceSDG 14 - Life Below Watergene flow
researchProduct

Plastic yielding of glass in high-pressure torsion apparatus

2018

International audience; Hardness measurements performed at room temperature have demonstrated that glass can flow under elevated pressure, whereas the effect of high pressure on glass rheology remains poorly quantified. Here, we applied a high-pressure torsion (HPT) apparatus to deform SCHOTT SF6 â glass and attempted to quantify the effect of pressure and temperature on the shear deformation of glass subjected to pressures from 0.3 GPa to 7 GPa and temperatures from 25 ℃ to 496 ℃. Results show that the plastic yield deformation was occurring during the HPT experiments on the SF6 glass at elevated temperature from 350 ℃ to 496 ℃. The yield stress of SF6 glass decreases with increasing tempe…

010302 applied physicsArrhenius equationPlastic yieldingMaterials scienceYield (engineering)Deformation (mechanics)Plastic yieldingTorsion (mechanics)02 engineering and technologyActivation energy[SPI.MAT] Engineering Sciences [physics]/Materials021001 nanoscience & nanotechnology01 natural sciencesglass flow[SPI.MAT]Engineering Sciences [physics]/Materialspressuresymbols.namesakehigh-pressure torsionRheologyHigh pressure0103 physical sciencessymbolsGeneral Materials ScienceComposite material0210 nano-technologyInternational Journal of Applied Glass Science
researchProduct

Analytical description of solid particles kinematics due to a fluid flow and application to the depiction of characteristic kinematics in cold sprayi…

2017

Abstract In several multiphase flow applications such as fluidization, thermal spraying, atomization manufacturing and so on, the Newton's law is widely enacted to formulate the particle/fluid kinematic interaction and then to compute particles kinematics. This paper provides analytical solutions of the Newton's law in its time-dependent formulation or simplified formulation, the latter being a reduction of the time dependent problem into a spatial description of the particle motion. It was found that the velocity solution is strictly similar in both cases so that the simplified formulation is viable. The W_ 1 branch of the Lambert's function yields the analytical particle residence time an…

010302 applied physicsChemistryGeneral Chemical EngineeringMultiphase flow02 engineering and technologyMechanicsKinematics021001 nanoscience & nanotechnologyResidence time (fluid dynamics)01 natural sciencessymbols.namesakeMach number0103 physical sciencesFluid dynamicssymbolsParticleParticle velocity0210 nano-technologyMagnetosphere particle motionPowder Technology
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

Strategies for numerical simulation of linear friction welding of metals: a review

2017

Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During this process, the heat source is determined by the frictional work transformed into heat. This results in a local softening of the material and plays a key role in the onset of the bonding conditions. In this paper, a critical analysis of the different approaches used to simulate the LFW processes is provided. The focus of the paper is the comparison of different modeling strategies and the most relevant outputs available, i.e. temperature, strain and stress distribution, mate…

010302 applied physicsFEMWork (thermodynamics)Materials scienceComputer simulationNumerical analysiMechanical EngineeringMechanical engineering02 engineering and technologyWelding021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing EngineeringFinite element methodMaterial flowlaw.inventionReciprocating motionlawResidual stress0103 physical sciencesFriction welding0210 nano-technologyLinear friction weldingProduction Engineering
researchProduct

Stability of melt flow during magnetic sonication in a floating zone configuration

2018

Combined static and alternating magnetic fields are shown to create an oscillating pressure that can cause cavitation in molten metals. A time-averaged flow is also excited, consisting of two tori squeezed to thin boundary layers. Flow instability develops as a standing wave between these tori.

010302 applied physicsFluid Flow and Transfer ProcessesMaterials scienceFlow (psychology)Computational MechanicsBoundary (topology)Torus02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldPhysics::Fluid DynamicsStanding waveModeling and SimulationExcited stateCavitation0103 physical sciences0210 nano-technologyMelt flow indexPhysical Review Fluids
researchProduct

Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review

2019

Abstract Thermal sprayed Fe-based amorphous coatings exhibit excellent wear and corrosion resistance, and thus have been widely utilized for enhancing the performance of material surfaces. In this paper, important research progresses achieved in regards to deposition technologies and properties of thermal sprayed Fe-based amorphous coatings are reviewed. In particular, the dependence of wear and corrosion resistance of the coatings on processing parameters, e.g., kinetic energy, particle size, gas flow rate, and heat treatment temperature are summarized. Moreover, the utilization of reinforced phases and alloy elements for enhancing the wear and corrosion resistance of the coatings are pres…

010302 applied physicsMaterials scienceMetallurgyAlloy02 engineering and technologySurfaces and InterfacesGeneral Chemistryengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsVolumetric flow rateCorrosionAmorphous solid0103 physical sciencesThermalMaterials ChemistryengineeringDeposition (phase transition)Fe basedParticle size0210 nano-technologySurface and Coatings Technology
researchProduct

Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets

2018

This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceFabricationelectrical conductivityBlanketCondensed Matter Physics01 natural sciencesTemperature measurement010305 fluids & plasmasCorrosionchemistry.chemical_compoundThermal conductivitydual-coolant lead-lithium (DCLL) blanketFlexural strengthchemistryCorrosion by PbLi0103 physical sciencesThermalSilicon carbide:NATURAL SCIENCES:Physics [Research Subject Categories]flow channel insert (FCI)thermal conductivityComposite materialporous SiCIEEE Transactions on Plasma Science
researchProduct