6533b85ffe1ef96bd12c1b1f
RESEARCH PRODUCT
Necessary and Sufficient Conditions for an Extended Noncontextuality in a Broad Class of Quantum Mechanical Systems
Jan-åke LarssonEhtibar N. DzhafarovJanne V. Kujalasubject
Quantum PhysicsClass (set theory)Property (philosophy)ta114Computer scienceSocial connectednessProbability (math.PR)ta111FOS: Physical sciencesGeneral Physics and AstronomyContext (language use)Electrical Engineering Electronic Engineering Information EngineeringKochen–Specker theoremkontekstuaalisuusMechanical systemJoint probability distributionFOS: MathematicscontextualityStatistical physicsElektroteknik och elektronikQuantum Physics (quant-ph)81P13 81Q99 60A99quantum mechanical systemsQuantumMathematics - Probabilitydescription
The notion of (non)contextuality pertains to sets of properties measured one subset (context) at a time. We extend this notion to include so-called inconsistently connected systems, in which the measurements of a given property in different contexts may have different distributions, due to contextual biases in experimental design or physical interactions (signaling): a system of measurements has a maximally noncontextual description if they can be imposed a joint distribution on in which the measurements of any one property in different contexts are equal to each other with the maximal probability allowed by their different distributions. We derive necessary and sufficient conditions for the existence of such a description in a broad class of systems including Klyachko-Can-Binicio\u{g}lu-Shumvosky-type (KCBS), EPR-Bell-type, and Leggett-Garg-type systems. Because these conditions allow for inconsistent connectedness, they are applicable to real experiments. We illustrate this by analyzing an experiment by Lapkiewicz and colleagues aimed at testing contextuality in a KCBS-type system.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 | Physical Review Letters |