6533b85ffe1ef96bd12c1b4b

RESEARCH PRODUCT

H-2, H-3(+) and the age of molecular clouds and prestellar cores

Mohamed JorfiAlexandre FaureTomás González-lezanaPascal HonvaultPascal HonvaultEvelyne RoueffPierre LesaffreLaurent Pagani

subject

AstrochemistryAbundance (chemistry)General MathematicsGeneral Physics and AstronomySULFUR CHEMISTRYAstrophysicsINITIAL CONDITIONS01 natural sciences7. Clean energySTAR-FORMATION0103 physical sciencesGravitational collapseProtostar010306 general physics010303 astronomy & astrophysicsAMBIPOLAR DIFFUSIONCOSMIC-RAY IONIZATION[PHYS]Physics [physics]INTERSTELLAR-MEDIUMStar formationMolecular cloudTRIPLY DEUTERATED AMMONIAGeneral EngineeringORTHO-PARA TRANSITIONSInterstellar mediumDARK CLOUDSGRAVITATIONAL COLLAPSEDeuterium13. Climate action[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]

description

Measuring the age of molecular clouds and prestellar cores is a difficult task that has not yet been successfully accomplished although the information is of paramount importance to help in understanding and discriminating between different formation scenarios. Most chemical clocks suffer from unknown initial conditions and are therefore difficult to use. We propose a new approach based on a subset of deuterium chemistry that takes place in the gas phase and for which initial conditions are relatively well known. It relies primarily on the conversion of H 3 + into H 2D + to initiate deuterium enrichment of the molecular gas. This conversion is controlled by the ortho/para ratio of H2 that is thought to be produced with the statistical ratio of 3 and subsequently slowly decays to an almost pure para-H2 phase. This slow decay takes approximately 1 Myr and allows us to set an upper limit on the age of molecular clouds. The deuterium enrichment of the core takes longer to reach equilibrium and allows us to estimate the time necessary to form a dense prestellar core, i.e. the last step before the collapse of the core into a protostar. We find that the observed abundance and distribution of DCO + and N 2D + argue against quasi-static core formation and favour dynamical formation on time scales of less than 1 Myr. Another consequence is that ortho-H 2 remains comparable to para-H 2 in abundance outside the dense cores. © 2012 The Royal Society.

10.1098/rsta.2012.0027https://hal.science/hal-00761627