6533b85ffe1ef96bd12c1dbb

RESEARCH PRODUCT

Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A

Tatu HaatajaSimon LecointeJean MérotRomain CapouladeUlla PentikäinenRafael C. Bernardi

subject

Filamins[SDV]Life Sciences [q-bio]Protein Tyrosine Phosphatase Non-Receptor Type 12Heart Valve DiseasesMutation MissenseMorphogenesisProtein tyrosine phosphataseMolecular Dynamics SimulationBiologyFilaminta3111ArticleFLNA-MVD03 medical and health sciencessteered molecular dynamics simulationsStructural Biologymechanical forcesmedicineHumansMitral valve prolapseMissense mutationFLNAmolekyylidynamiikkasydäntauditCell adhesionMolecular Biology030304 developmental biologyX-ray crystallography0303 health sciencesBinding Sites030302 biochemistry & molecular biologyta1182filamiinitprotein tyrosine phosphatase 12medicine.disease3. Good healthCell biologyFilamin AMutation (genetic algorithm)cardiovascular systemMitral Valveproteiinitmitral valve prolapseröntgenkristallografiaProtein Binding

description

International audience; Filamin A (FLNa), expressed in endocardial endothelia during fetal valve morphogenesis, is key in cardiac development. Missense mutations in FLNa cause non-syndromic mitral valve dysplasia (FLNA-MVD). Here, we aimed to reveal the currently unknown underlying molecular mechanism behind FLNA-MVD caused by the FLNa P637Q mutation. The solved crystal structure of the FLNa3-5 P637Q revealed that this mutation causes only minor structural changes close to mutation site. These changes were observed to significantly affect FLNa's ability to transmit cellular force and to interact with its binding partner. The performed steered molecular dynamics simulations showed that significantly lower forces are needed to split domains 4 and 5 in FLNA-MVD than with wild-type FLNa. The P637Q mutation was also observed to interfere with FLNa's interactions with the protein tyrosine phosphatase PTPN12. Our results provide a crucial step toward understanding the molecular bases behind FLNA-MVD, which is critical for the development of drug-based therapeutics.

10.1016/j.str.2018.09.007https://hal.archives-ouvertes.fr/hal-02332276