6533b85ffe1ef96bd12c1dcc

RESEARCH PRODUCT

Evaluation of Vertical Fatigue Cracks by Means of Flying Laser Thermography

Nicola MontinaroGiuseppe PitarresiDonatella Cerniglia

subject

010302 applied physicsMaterials scienceLaser scanningField (physics)Laser thermographyMechanical EngineeringAcousticsNon-destructive testingchemistry.chemical_elementLaser01 natural sciencesIR thermographylaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinechemistryMechanics of MaterialsAluminiumlaw0103 physical sciencesSolid mechanicsThermographyEmissivityHead (vessel)Thermal analysis010301 acoustics

description

The present paper proposes a new procedure to analyze the temperature field distribution during Flying Laser Spot and Laser Line Thermographic scanning (FLST, FLLT) of metallic components, in order to detect vertical surface cracks. The methodology exploits the changes in the temperature field produced by a vertical crack, acting as a barrier towards heat diffusion, when the laser approaches the defect. A number of small regions of interests (ROIs) is placed nearby and around the laser source. The average temperature from each ROI is then monitored during the laser scanning. Vertical cracks can be detected by analyzing and comparing the temperature fluctuations from each ROI when the laser crosses a crack. The paper, in particular, illustrates how the use of multiple ROIs, placed at different locations, may provide additional information that can be used to characterize the defect, and to identify the crack tip location. The approach is validated on plates made of steel and aluminum alloy, where natural cracks have been introduced by fatigue loading, and whose surface has been painted to enhance emissivity. Scratches in the paint have been artificially made in order to analyze their influence on the defect signature. The proposed experimental setup is further simplified by moving the plate samples, mounted on slits, in front of a still laser source and camera head.

https://doi.org/10.1007/s10921-019-0586-5