6533b85ffe1ef96bd12c26d2

RESEARCH PRODUCT

Lipopolysaccharide‐regulated secretion of soluble and vesicle‐based proteins from a panel of colorectal cancer cell lines

Jaco C. KnolMeike De WitFernando Vidal-vanaclochaMadalena N. MonteiroThang V. PhamRemond J.a. FijnemanMarina Pérez-gordoSander R. PiersmaCira R. Garcia De DurangoConnie R. JimenezIrene V. Bijnsdorp

subject

Lipopolysaccharides0301 basic medicine030102 biochemistry & molecular biologymedicine.diagnostic_testLipopolysaccharideChemistryClinical BiochemistryCellmedicine.diseaseProteomicsMolecular biologyExosomeMetastasis03 medical and health scienceschemistry.chemical_compound030104 developmental biologymedicine.anatomical_structureWestern blotCell cultureCancer cellmedicine

description

Purpose To mimic the perioperative microenvironment where bacterial products get in contact with colorectal cancer (CRC) cells and study its impact on protein release, we exposed six CRC cell lines to lipopolysaccharide (LPS) and investigated the effect on the secretome using in-depth mass spectrometry-based proteomics. Experimental design Cancer cell secretome was harvested in bio-duplicate after LPS treatment, and separated in EV and soluble secretome (SS) fractions. Gel-fractionated proteins were analysed by label-free nano-liquid chromatography coupled to tandem mass spectrometry. NF-κB activation, triggered upon LPS treatment, was evaluated. Results We report a CRC secretome dataset of 5601 proteins. Comparison of all LPS-treated cells with controls revealed 37 proteins with altered abundance in the SS, including RPS25; and 13 in EVs, including HMGB1. Comparing controls and LPS-treated samples per cell line, revealed 564 significant differential proteins with fold-change > 3. The LPS-induced release of RPS25 was validated by western blot. Conclusions and clinical relevance Bacterial endotoxin has minor impact on the global CRC cell line secretome yet it may alter protein release in a cell line-specific manner. This modulation might play a role in orchestrating the development of a permissive environment for CRC liver metastasis, especially through EV-communication. This article is protected by copyright. All rights reserved.

https://doi.org/10.1002/prca.201900119