6533b860fe1ef96bd12c2f9a
RESEARCH PRODUCT
Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity.
Sanshiro HanadaPetra Fallier-beckerC. James KirkpatrickRonald E. UngerChristian Freesesubject
0301 basic medicineSus scrofaCell Culture TechniquesCell CommunicationBiologyMatrix metalloproteinaseBlood–brain barrierBiochemistryTight JunctionsCapillary Permeability03 medical and health sciences0302 clinical medicinePEDFIn vivoNeurotrophic factorsCell Line TumormedicineElectric ImpedanceAnimalsHumansNerve Growth FactorsAngiogenic ProteinsNeuronsTight Junction ProteinsTight junctionEndothelial CellsCell BiologyCoculture TechniquesCell biologyVascular endothelial growth factor B030104 developmental biologymedicine.anatomical_structurePhenotypeBlood-Brain BarrierImmunologyNeurovascular CouplingEndostatinCardiology and Cardiovascular Medicine030217 neurology & neurosurgerySignal Transductiondescription
We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm2 was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.
year | journal | country | edition | language |
---|---|---|---|---|
2016-07-22 | Microvascular research |