6533b860fe1ef96bd12c2ffc
RESEARCH PRODUCT
Noise driven translocation of short polymers in crowded solutions
Alessandro FiasconaroBernardo SpagnoloNicola Pizzolatosubject
Statistics and ProbabilityPhysicschemistry.chemical_classificationQuantitative Biology::BiomoleculesStatistical Mechanics (cond-mat.stat-mech)Thermal fluctuationsEquations of motionFOS: Physical sciencesdynamics (theory) mechanical properties (DNA RNA membranes bio-polymers) (theory) Brownian MotionStatistical and Nonlinear PhysicsContext (language use)PolymerNoise (electronics)Condensed Matter::Soft Condensed MatterMolecular dynamicschemistryChemical physicsRectangular potential barrierStatistics Probability and UncertaintyFirst-hitting-time modelCondensed Matter - Statistical Mechanicsdescription
In this work we study the noise induced effects on the dynamics of short polymers crossing a potential barrier, in the presence of a metastable state. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion with a Gaussian uncorrelated noise. We find a nonmonotonic behaviour of the mean first passage time and the most probable translocation time, of the polymer centre of inertia, as a function of the polymer length at low noise intensity. We show how thermal fluctuations influence the motion of short polymers, by inducing two different regimes of translocation in the molecule transport dynamics. In this context, the role played by the length of the molecule in the translocation time is investigated.
year | journal | country | edition | language |
---|---|---|---|---|
2008-10-09 |