6533b860fe1ef96bd12c3038
RESEARCH PRODUCT
Thermodynamics based on the principle of least abbreviated action: Entropy production in a network of coupled oscillators
José A. ManzanaresVladimir García-moralesJulio Pellicersubject
PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionmedia_common.quotation_subjectConfiguration entropyMaximum entropy thermodynamicsFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamicsThermodynamicsSecond law of thermodynamicsEntropy in thermodynamics and information theoryEntropy (classical thermodynamics)Classical mechanicsStatistical physicsCondensed Matter - Statistical MechanicsJoint quantum entropymedia_commondescription
We present some novel thermodynamic ideas based on the Maupertuis principle. By considering Hamiltonians written in terms of appropriate action-angle variables we show that thermal states can be characterized by the action variables and by their evolution in time when the system is nonintegrable. We propose dynamical definitions for the equilibrium temperature and entropy as well as an expression for the nonequilibrium entropy valid for isolated systems with many degrees of freedom. This entropy is shown to increase in the relaxation to equilibrium of macroscopic systems with short-range interactions, which constitutes a dynamical justification of the Second Law of Thermodynamics. Several examples are worked out to show that this formalism yields the right microcanonical (equilibrium) quantities. The relevance of this approach to nonequilibrium situations is illustrated with an application to a network of coupled oscillators (Kuramoto model). We provide an expression for the entropy production in this system finding that its positive value is directly related to dissipation at the steady state in attaining order through synchronization.
year | journal | country | edition | language |
---|---|---|---|---|
2006-02-07 | Annals of Physics |