6533b860fe1ef96bd12c31f5
RESEARCH PRODUCT
Multi-scenario multi-objective robust optimization under deep uncertainty: A posteriori approach
Kaisa MiettinenBabooshka ShavazipourJan H. Kwakkelsubject
Mathematical optimizationEnvironmental Engineering010504 meteorology & atmospheric sciencesComputer sciencepäätöksentekotehokkuus0211 other engineering and technologies02 engineering and technologyoptimaalisuus01 natural sciencesMulti-objective optimizationScenario planningRobust decision-makingdeep uncertaintyoptimointiRobustness (computer science)Reference pointsScenario planning0105 earth and related environmental sciencesscenario planningrobust decision making scalarizing functions021103 operations researchpareto-tehokkuusEcological ModelingPareto principleRobust optimizationskenaariotepävarmuusmonitavoiteoptimointireference pointsMulti-objective optimizationRobust decision making scalarizing functionsmulti-objective optimizationDeep uncertaintyBenchmark (computing)A priori and a posterioriSoftwaredescription
This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution generation. To demonstrate and test the novel approach, we use the classic shallow lake problem. We compare the results obtained with the novel approach to those obtained with previously used approaches. We show that the novel approach guarantees the feasibility and robust efficiency of the produced solutions under all selected scenarios, while decreasing computation cost, addresses the scenario-dependency issues, and enables the decision-makers to explore the trade-off between optimality/feasibility in any selected scenario and robustness across a broader range of scenarios. We also find that the lake problem is ill-suited for reflecting trade-offs in robust performance over the set of scenarios and Pareto optimality in any specific scenario, highlighting the need for novel benchmark problems to properly evaluate novel approaches. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2021-10-01 |