6533b860fe1ef96bd12c3863

RESEARCH PRODUCT

Computer simulation of the glass transition of polymer melts

H. P. WittmannDieter W. HeermannKurt KremerKurt BinderJörg BaschnagelWolfgang Paul

subject

Self-diffusionMolecular geometryMaterials scienceComputational chemistryMonte Carlo methodRelaxation (NMR)ThermodynamicsCubic crystal systemGlass transitionConstant (mathematics)Square (algebra)

description

Bond fluctuation models on square and simple cubic lattices at melt densities are simulated, using potentials depending on the length of the (effective) bond (and also on the bond angle, in d=3 dimensions). Various relaxation functions have the Kohlrausch-Williams-Watts (KWW) form; the associated relaxation time diverges as exp (const/T 2) in d=2 and as exp [const/T−T 0)] in d=3. For d=3 the self-diffusion constant also follows the Vogel-Fulcher law, with T 0=250 K for chain lengths N=20 and potentials adapted to bisphenol-A-polycarbonate [BPA-PC].

https://doi.org/10.1007/bfb0116443