0000000000015488

AUTHOR

Jörg Baschnagel

0000-0003-2678-3464

Monte Carlo simulation of the glass transition in three-dimensional dense polymer melts

Abstract We determine the incoherent intermediate scattering function φsq(t) for a three-dimensional dense polymer melt. This function shows the signature of a two-step process which was quantitatively compared to the idealized mode coupling theory (MCT) within the β-relaxation regime. A major result of this analysis is that the studied temperature interval splits in a high temperature part, where the idealized theory describes φsq(t) over about three decades in time, and a low temperature part, where it strongly overestimates the freezing tendency of the melt. Since one can qualitatively attribute this discrepancy between the idealized MCT and the simulation data to hopping processes, the …

research product

Dynamics of confined polymer melts: Recent Monte Carlo simulation results

The dynamic behavior of thin polymer films is studied by Monte Carlo simulations of a simplified lattice model. The film geometry is realized by two opposite hard walls whose distance is varied in the simulations. In the films the dynamics is accelerated with respect to the bulk, leading to a decrease of the extrapolated glass transition temperature with decreasing film thickness.

research product

Monte Carlo simulations of the polymer glass transition: From the test of theories to material modeling

We present results on the glass transition in polymer melts using Monte Carlo simulations of the bond fluctuation lattice model. There are two questions we address in this work. What is the temperature dependence of the entropy density in such a model polymer melt and how well is it described by theories like the Gibbs-DiMarzio theory of the glass transition? And to what degree is one able to map the Hamiltonian of such an abstract lattice model onto a specific polymer material and use it to model the large scale and long time properties of a realistic polymer melt?

research product

Aging effects in glassy polymers: a Monte Carlo study

Abstract By means of dynamic Monte Carlo simulation the physical aging of a glassy polymer melt is studied. The melt is simulated by a coarse-grained lattice model, the bond-fluctuation model, on a simple cubic lattice. In order to generate glassy freezing an energy is associated with long bonds, which leads to a competition between the energetically favored bond stretching and the local density of the melt at low temperatures. The development of this competition during the cooling process strongly slows down the structural relaxation and makes the melt freeze in an amorphous structure as soon as the internal relaxation time matches the time scale of the cooling rate. Therefore the model ex…

research product

Monte Carlo simulation of the glass transition in polymer melts: An application of MCT

Abstract This paper reviews the results of a large scale Monte Carlo simulation for the dynamics of a supercooled polymer melt. The dynamics of the melt was studied by means of the time evolution of the incoherent intermediate scattering function φs q(t), which was monitored over seven decades in time. In an intermediate time window it is possible to describe the decay of φs q(t) quantitatively in the framework of mode-coupling theory, provided the extended version of the theory is used.

research product

Monte Carlo and molecular dynamics simulation of the glass transition of polymers

Two coarse-grained models for polymer chains in dense glass-forming polymer melts are studied by computer simulation: the bond-fluctuation model on a simple cubic lattice, where a bond-length potential favors long bonds, is treated by dynamic Monte Carlo methods, and a bead-spring model in the continuum with a Lennard-Jones potential between the beads is treated by Molecular Dynamics. While the dynamics of both models differ for short length scales and associated time scales, on mesoscopic spatial and temporal scales both models behave similarly. In particular, the mode coupling theory of the glass transition can be used to interpret the slowing down of the undercooled polymer melt. For the…

research product

Dynamics of a supercooled polymer melt above the mode-coupling critical temperature: cage versus polymer-specific effects

This paper reports results of molecular dynamics simulations for a glassy polymer melt consisting of short, non-entangled chains. The temperature region studied covers the supercooled state of the melt above the mode-coupling critical temperature. The analysis focuses on the interplay of simple-liquid and polymer-specific effects. One can clearly distinguish two regimes: a regime of small and one of large monomer displacements. The first regime corresponds to motion of a monomer in its local environment. It is dominated by the cage effect and well described by the idealized mode-coupling theory. The second regime is governed by the late-β/early-α process. In this regime the connectivity of …

research product

Structure and dynamics of thin polymer films: a case study with the bond-fluctuation model

Abstract This paper reports Monte Carlo simulation results of a polymer melt of short, non-entangled chains which are embedded between two impenetrable walls. The melt is simulated by the bond-fluctuation lattice model under athermal conditions, i.e. only excluded volume interactions between the monomers and between the monomers and the walls are taken into account. In the simulations, the wall separation is varied from about one to about 15 times the bulk radius of gyration R g . The confinement influences both static and dynamic properties of the films: Chains close to the walls preferentially orient parallel to it. This parallel orientation decays with increasing distances from the wall …

research product

Dynamics of Glassy Polymer Melts in Confined Geometry: A Monte Carlo Simulation

Dynamic properties of a dense polymer melt confined between two hard walls are investigated over a wide range of temperatures by dynamic Monte Carlo simulation. The temperature interval ranges from the ordinary liquid to the strongly supercooled melt. The influence of temperature, density and confinement on the polymer dynamics is studied by various mean-square displacements, structural relaxation functions and quantities derived from them (relaxation times, apparent diffusion coefficients, monomer relaxation rates), yielding the following results: The motion of the monomers and polymers close to the walls is enhanced in parallel, but reduced in perpendicular direction. This dynamic anisotr…

research product

Structural and conformational dynamics of supercooled polymer melts: Insights from first-principles theory and simulations

We report on quantitative comparisons between simulation results of a bead-spring model and mode-coupling theory calculations for the structural and conformational dynamics of a supercooled, unentangled polymer melt. We find semiquantitative agreement between simulation and theory, except for processes that occur on intermediate length scales between the compressibility plateau and the amorphous halo of the static structure factor. Our results suggest that the onset of slow relaxation in a glass-forming melt can be described in terms of monomer-caging supplemented by chain connectivity. Furthermore, a unified atomistic description of glassy arrest and of conformational fluctuations that (as…

research product

Monte Carlo simulation of the glass transition in polymeric systems: Recent developments

Abstract The bond fluctuation model on square and s.c. lattices is used as a coarse-grained model for flexible polymers in dense melts. Using an energy that favours long bonds, a conflict is created between the tendency of the bonds to stretch at low temperatures and packing constraints. This simple concept of ‘geometric frustration’ leads to glass transition. Both static and dynamic properties of this model are investigated by Monte Carlo simulations, paying attention to effects found by varying the cooling rate and the chain length N of the polymers. In two and three spatial dimensions an effective (cooling-rate dependent) glass transition temperature T g can be defined, where the system …

research product

Phase separation of symmetrical polymer mixtures in thin-film geometry

Monte Carlo simulations of the bond fluctuation model of symmetrical polymer blends confined between two “neutral” repulsive walls are presented for chain lengthNA=NB=32 and a wide range of film thicknessD (fromD=8 toD=48 in units of the lattice spacing). The critical temperaturesTc(D) of unmixing are located by finite-size scaling methods, and it is shown that\(T_c (\infty ) - T_c (D) \propto D^{ - {1 \mathord{\left/ {\vphantom {1 {v_3 }}} \right. \kern-\nulldelimiterspace} {v_3 }}} \), wherev3≈0.63 is the correlation length exponent of the three-dimensional Ising model universality class. Contrary to this result, it is argued that the critical behavior of the films is ruled by two-dimensi…

research product

Statics and Dynamics of Bidisperse Polymer Melts:  A Monte Carlo Study of the Bond-Fluctuation Model

As a first step toward the computer simulation of polydisperse polymeric melts, a lattice model containing two types of chains with lengths N1 = 20 − x and N2 = 20 + 4x (0 ≤ x ≤ 10 ) is studied. This variation of x, together with the fixed composition of 80% of short and 20% of long chains, leads to a polydispersity of 1 ≤ Nw/Nn ≤ 2 (Nw, Nn:  weight-, number-average chain lengths). To represent dense melts, the bond-fluctuation model at a volume fraction, φ = 1/2, of occupied lattice sites is used. The simulation treats both the athermal case (chain connectivity and excluded volume interaction only) and a thermal case, where additionally a choice for the bond length and bond angle potential…

research product

Polymer Films in the Normal-Liquid and Supercooled State: A Review of Recent Monte Carlo Simulation Results

This paper reviews recent Monte Carlo simulation studies of the glassy behavior in thin polymer films. The simulations employ a version of the bond-fluctuation lattice model, in which the glass transition is driven by the competition between a stiffening of the polymers and their dense packing in the melt. The melt is geometrically confined between two impenetrable walls separated by distances ranging from once to about fifteen times the bulk radius of gyration. The confinement influences static and dynamic properties of the films: Chains close to the wall preferentially orient parallel to it. This orientation tendency propagates through the film and leads to a layer structure at low temper…

research product

Glass physics: still not transparent

Glass is a commonplace word. One immediately thinks of windows or bottles and of properties like brittleness or transparency. However, for a glass blower another feature is more important: glass does not melt abruptly, as a crystal does, but gradually over a range of temperatures. This means that he or she can alter the temperature at which glass solidifies or becomes a liquid by changing the rate at which it is cooled or heated. This is in stark contrast to the behaviour observed when the crystalline form of a material is heated: it will always melt at the same temperature.

research product

Growing range of correlated motion in a polymer melt on cooling towards the glass transition

Many liquids cooled to low temperatures form glasses (amorphous solids) instead of crystals. As the glass transition is approached, molecules become localized and relaxation times increase by many orders of magnitude1. Many features of this ‘slowing down’ are reasonably well described2 by the mode-coupling theory of supercooled liquids3. The ideal form of this theory predicts a dynamical critical temperature T c at which the molecules become permanently trapped in the ‘cage’ formed by their neighbours, and vitrification occurs. Although there is no sharp transition, because molecules do eventually escape their cage, its signature can still be observed in real and simulated liquids. Unlike c…

research product

Simulation of Phase Transitions of Single Polymer Chains: Recent Advances

The behaviour of a flexible polymer chain in solvents of variable quality in dilute solution is discussed both in the bulk and in the presence of an adsorbing wall. Monte Carlo simulations of coarse-grained bead-spring models and of the bond fluctuation model are presented and interpreted in terms of phenomenological theories and scaling concepts. Particular attention is paid to the behaviour of the polymer chain when the temperature of the polymer solution gets lower than the Theta temperature. It is argued that the adsorption transition line at the Theta temperature splits into lines of wetting and drying transitions of polymer globules attached to the wall. In addition, it is shown that …

research product

Molecular-dynamics simulation of a glassy polymer melt: Incoherent scattering function

We report results of molecular-dynamics simulations for a glassy polymer melt consisting of short, linear bead-spring chains. It was shown in previous work that this onset of the glassy slowing down is compatible with the predictions of the mode coupling theory. The physical process of `caging' of a monomer by its spatial neighbors leads to a distinct two step behavior in the particle mean square displacements. In this work we analyze the effects of this caging process on the Rouse description of the melt's dynamics. We show that the Rouse theory is applicable for length and time scales above the typical scales for the caging process. Futhermore, the monomer displacement is compared with si…

research product

Dynamics of Polymer Melts above the Glass Transition:  Monte Carlo Studies of the Bond Fluctuation Model

The bond fluctuation model on the simple cubic lattice with a bond-length dependent potential energy favoring long bonds exhibits a glassy freezing in as the temperature is lowered, many properties being qualitatively similar to experiment. The present paper studies the dynamical properties of the model (as they result from the random hopping algorithm), using configurations of undercooled polymer melts that have been carefully equilibrated by the slithering snake algorithm. In this way quantitatively reliable data can be obtained for distinctly lower temperatures than in the previous work on the dynamics of this model that used the random hopping algorithm for equilibration as well. If var…

research product

Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length $\xi$ characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances $r \gg \xi$. These correlations are scale-free and, surprisingly, do not depend explicitly on the compres…

research product

Reduction of the glass transition temperature in polymer films: A molecular-dynamics study

We present results of molecular dynamics (MD) simulations for a non-entangled polymer melt confined between two completely smooth and repulsive walls, interacting with inner particles via the potential $U_{\rm wall}\myeq (\sigma/z)^9$, where $z \myeq |z_{\rm particle}-z_{\rm wall}|$ and $\sigma$ is (roughly) the monomer diameter. The influence of this confinement on the dynamic behavior of the melt is studied for various film thicknesses (wall-to-wall separations) $D$, ranging from about 3 to about 14 times the bulk radius of gyration. A comparison of the mean-square displacements in the film and in the bulk shows an acceleration of the dynamics due to the presence of the walls. %Consistent…

research product

Monte Carlo simulation studies of the interfaces between polymeric and other solids as models for fiber-matrix interactions in advanced composite materials

As a coarse-grained model for dense amorphous polymer systems interacting with solid walls (i.e., the fiber surface in a composite), the bond fluctuation model of flexible polymer chains confined between two repulsive surfaces is studied by extensive Monte Carlo simulations. Choosing a potential for the length of an effective bond that favors rather long bonds, the full temperature region from ordinary polymer melts down to the glass transition is accessible. It is shown that in the supercooled state near the glass transition an “interphase” forms near the walls, where the structure of the melt is influenced by the surface. This “interphase” already shows up in static properties, but also h…

research product

GLASS TRANSITION IN THIN POLYMER FILMS: A MOLECULAR DYNAMICS STUDY

A melt of nonentangled polymer chains confined between two smooth and purely repulsive walls is studied for various film thicknesses D and temperatures. The dynamics of the supercooled films is qualitatively identical to that of the bulk, but the walls lead to faster relaxation. To quantify this observation we analyze the data by the mode-coupling theory (MCT) of the glass transition. We find that the critical temperature of MCT, Tc(D), decreases with D and that T - Tc(D) is a relevant temperature scale. The static structure factor and dynamic correlation functions at intermediate times coincide with bulk behavior when compared to the same T - Tc(D).

research product

The glass transition in polymer melts

This paper presents some results of a Monte Carlo simulation for the glass transition in two- and three-dimensional polymer melts. The melt was simulated by the bond-fluctuation model on a d-dimensional cubic lattice which was combined with a two-level hamiltonian favouring long bonds in order to generate a competition between the energetic and topological constraints in the system. This competition prevents crystallization and makes the melt freeze in an amorphous structure as soon as the internal relaxation times match the observation time of the simulation set by the cooling rate. The freezing point of the melt, i.e the glass transition temperature Tg, thus depends upon the cooling rate …

research product

Adsorption Transition of a Polymer Chain at a Weakly Attractive Surface: Monte Carlo Simulation of Off-Lattice Models

A bead-spring model of a polymer chain with one end attached to a wall is studied by Monte Carlo simulations for chain lengths 16 ≤ N ≤ 256. Two types of adsorption potentials, 9-3 and 10-4 Lennard-Jones (LJ) potentials, between the effective monomers and the wall are assumed. For both cases the adsorption transition where the chain changes its asymptotic statistical properties from a three-dimensional to a two-dimensional configuration is located using a scaling analysis. It is shown that the crossover exponent φ = 0.50 ± 0.02 is the same for both LJ potentials. This value is compatible with recent theoretical predictions and simulation results for lattice models with short-range wall pote…

research product

Static and dynamic properties of supercooled thin polymer films

The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time alpha-process and the…

research product

Interfacial properties of glassy polymer melts: A Monte Carlo study

The properties of the interface between a polymer melt and a solid wall are studied over a wide range of temperatures by dynamic Monte Carlo simulations. It is shown that in the supercooled state near the glass transition of the melt an “interphase” forms, the structure of which is influenced by the wall. The thickness of this interphase is determined from the monomer density profile near the surface and is strongly temperature dependent. At low glass-like temperatures it is larger than the bulk radius of gyration of the chains.

research product

Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt

We analyze dynamical heterogeneities in a simulated “bead-spring” model of a nonentangled, supercooled polymer melt. We explore the importance of chain connectivity on the spatially heterogeneous motion of the monomers. We find that when monomers move, they tend to follow each other in one-dimensional paths, forming strings as previously reported in atomic liquids and colloidal suspensions. The mean string length is largest at a time close to the peak time of the mean cluster size of mobile monomers. This maximum string length increases, roughly in an exponential fashion, on cooling toward the critical temperature TMCT of the mode-coupling theory, but generally remains small, although large…

research product

Long Range Bond-Bond Correlations in Dense Polymer Solutions

The scaling of the bond-bond correlation function $C(s)$ along linear polymer chains is investigated with respect to the curvilinear distance, $s$, along the flexible chain and the monomer density, $\rho$, via Monte Carlo and molecular dynamics simulations. % Surprisingly, the correlations in dense three dimensional solutions are found to decay with a power law $C(s) \sim s^{-\omega}$ with $\omega=3/2$ and the exponential behavior commonly assumed is clearly ruled out for long chains. % In semidilute solutions, the density dependent scaling of $C(s) \approx g^{-\omega_0} (s/g)^{-\omega}$ with $\omega_0=2-2\nu=0.824$ ($\nu=0.588$ being Flory's exponent) is set by the number of monomers $g(\r…

research product

Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives

Recent developments that increase the time and distance scales accessible in the simulations of specific polymers are reviewed. Several different techniques are similar in that they replace a model expressed in fully atomistic detail with a coarse-grained model of the same polymer, atomistic → coarse-grained (and beyond!), thereby increasing the time and distance scales accessible within the expenditure of reasonable computational resources. The bridge represented by the right-pointing arrow can be constructed via different procedures, which are reviewed here. The review also considers the status of methods which reverse this arrow, atomistic ← coarse-grained. This “reverse-mapping” recover…

research product

Polymer-brush lubricated surfaces with colloidal inclusions under shear inversion.

We characterize the response of compressed, sheared polymer-brush bilayers with colloidal inclusions to highly nonstationary inversion processes by means of molecular dynamics simulations and scaling theory. Bilayers with a simple (dimeric) solvent reveal an overshoot for the shear stress, while simulations of dry brushes without explicit solvent molecules fail to display this effect. We demonstrate that mechanical instabilities can be controlled by the inclusion of macromolecular structures, such as colloids of varying softness. Based on a recently developed theory, we suggest a scaling approach to determine a characteristic time for conformational and collective responses.

research product

On the Adsorption Process in Polymer Brushes:  A Monte Carlo Study

The adsorption process of the single polymer chain in a polymer brush of varying surface coverages is studied by means of Monte Carlo simulations of the bond-fluctuation lattice model. Only the end monomers can adsorb at the grafting surface, whereas inner monomers interact repulsively with it. The brush builds up a steric hindrance which forces the penetrating polymer to stretch strongly and which is responsible for small adsorption probabilities at surface coverages close to the overlap density. The final step of the adsorption process is determined by a fluctuation of the end monomer around its average position, which is comparable to the initial step of the desorption process.

research product

Static Properties of a Simulated Supercooled Polymer Melt: Structure Factors, Monomer Distributions Relative to the Center of Mass, and Triple Correlation Functions

We analyze structural and conformational properties in a simulated bead-spring model of a non-entangled, supercooled polymer melt. We explore the statics of the model via various structure factors, involving not only the monomers, but also the center of mass (CM). We find that the conformation of the chains and the CM-CM structure factor, which is well described by a recently proposed approximation [Krakoviack et al., Europhys. Lett. 58, 53 (2002)], remain essentially unchanged on cooling toward the critical glass transition temperature of mode-coupling theory. Spatial correlations between monomers on different chains, however, depend on temperature, albeit smoothly. This implies that the g…

research product

Molecular-dynamics simulation of a glassy polymer melt: Rouse model and cage effect

We report results of molecular-dynamics simulations for a glassy polymer melt consisting of short, linear bead-spring chains. It was shown in previous work that this onset of the glassy slowing down is compatible with the predictions of the mode coupling theory. The physical process of `caging' of a monomer by its spatial neighbors leads to a distinct two step behavior in the particle mean square displacements. In this work we analyze the effects of this caging process on the Rouse description of the melt's dynamics. We show that the Rouse theory is applicable for length and time scales above the typical scales for the caging process. Futhermore, the monomer displacement is compared with si…

research product

Glass transition of polymer melts: Test of theoretical concepts by computer simulation.

Abstract Polymers are good glass formers and allow for the study of melts near the glass transition in (meta-)stable equilibrium. Theories of the glass transition imply such an equilibrium and can, hence, be tested by the study of polymer melts. After a brief summary of the basic experimental facts about the glass transition in polymers, the main theoretical concepts are reviewed: mode coupling theory (MCT), entropy theory, free-volume theory, the idea of a growing length describing the size of cooperative regions, etc. Then, two basic coarse-grained models of polymers are described, which have been developed aiming at a test of these concepts. The first model is the bond-fluctuation model …

research product

Glassy dynamics in thin polymer films: recent MD results

The influence of a film geometry on the glass transition is investigated via molecular dynamics (MD) simulations of a (non-entangled) polymer melt. The confinement is realized by two identical potential barriers of the form U wall = z -9 , where z denotes the distance of a particle from the wall. Despite the geometric confinement, basic qualitative features of the system dynamics can be well described in the framework of the mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate ti…

research product

Entropy of glassy polymer melts: Comparison between Gibbs-DiMarzio theory and simulation.

We calculate the free energy of a model for a polymer melt in a computer simulation of the bond-fluctuation model and determine the entropy of the melt over a wide range of temperatures, including the region close to the glass transition. The results are compared with the Gibbs-DiMarzio theory, a theory by Flory for semiflexible polymers, and a modification of their theories due to Milchev. We can describe the data within the framework of the Flory theory with Milchev's correction and discuss the consequences for the understanding of the glass transition. \textcopyright{} 1996 The American Physical Society.

research product

Publisher’s Note: “Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt” [J. Chem. Phys. 119, 5290 (2003)]

a! Present address: Department of Physics, Wesleyan University, Middletown, CT 06459. b!Author to whom correspondence should be addressed. Electronic mail: baschnag@ics.u-strasbg.fr c!Author to whom correspondence should be addressed. Electronic mail: sglotzer@umich.edu FIG. 8. Temperature dependence of the ratio of ^sseg(tstr )& and ^s(tstr )&. tstr max is the peak time of ^sseg& and ^s& at different temperatures. TMCT 50.45. JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 14 8 APRIL 2004

research product

Frictional Forces between Strongly Compressed, Nonentangled Polymer Brushes: Molecular Dynamics Simulations and Scaling Theory

By means of molecular dynamics simulations and scaling theory we study the response of opposing polymer brushes to constant shear motion under good solvent conditions. Model systems that contain explicit solvent molecules (Lennard-Jones dimers) are compared to solvent-free systems while varying of the distance between the grafted layers and their molecular parameters, chain length and grafting density. Our study reveals a power-law dependence of macroscopic transport properties on the Weissenberg number, W, beyond linear response. For instance, we find that the kinetic friction constant scales as μ ∼ W0.57 for large values of W. We develop a scaling theory that describes our data and previo…

research product

Modeling polyethylene with the bond fluctuation model

This work presents an application of recently developed ideas about how to map real polymer systems onto abstract models. In our case the abstract model is the bond fluctuation model with a Monte Carlo dynamics. We study the temperature dependence of chain dimensions and of the self-diffusion behavior in the melt from high temperatures down to 200 K. The chain conformations are equilibrated over the whole temperature range, which is possible for the abstract type of model we use. The size of the chains as measured by the characteristic ratio is within 25% of experimental data. The simulated values of the chain self-diffusion coefficient have to be matched to experimental information at one …

research product

Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions

Whereas the first part of this paper dealt with the relaxation in the β-regime, this part investigates the final relaxation (α-relaxation) of a simulated polymer melt consisting of short non-entangled chains in the supercooled state above the critical temperature of ideal mode-coupling theory (MCT). The temperature range covers the onset of a two-step relaxation behaviour down to a temperature merely 2% above . We monitor the incoherent intermediate scattering function as well as the coherent intermediate scattering function of both a single chain and the melt over a wide range of wave numbers q. Upon approaching the coherent α-relaxation time of the melt increases strongly close to the max…

research product

Computer simulation of the glass transition of polymer melts

Bond fluctuation models on square and simple cubic lattices at melt densities are simulated, using potentials depending on the length of the (effective) bond (and also on the bond angle, in d=3 dimensions). Various relaxation functions have the Kohlrausch-Williams-Watts (KWW) form; the associated relaxation time diverges as exp (const/T 2) in d=2 and as exp [const/T−T 0)] in d=3. For d=3 the self-diffusion constant also follows the Vogel-Fulcher law, with T 0=250 K for chain lengths N=20 and potentials adapted to bisphenol-A-polycarbonate [BPA-PC].

research product

On the Glass Transition in Polymer Films: Recent Monte Carlo Results

AbstractThis paper reports results of a Monte Carlo simulation for a simplified lattice modelof a supercooled polymer film. The film geometry is realized by two opposite hard walls.The distance between the walls is varied. The chains exhibit a strong tendency to orientparallel to the walls and are flattened when being very close to them. This deviation of thepolymer structure with respect to the bulk is accompanied by an acceleration of local densityfluctuations. On the other hand, the diffusion coefficient of a chain remains unaffected.

research product

Simulation of Models for the Glass Transition: Is There Progress?

The glass transition of supercooled fluids is a particular challenge for computer simulation, because the (longest) relaxation times increase by about 15 decades upon approaching the transition temperature T g. Brute-force molecular dynamics simulations, as presented here for molten SiO2 and coarse-grained bead-spring models of polymer chains, can yield very useful insight about the first few decades of this slowing down. Hence this allows to access the temperature range around T c of the so-called mode coupling theory, whereas the dynamics around the experimental glass transition is completely out of reach. While methods such as “parallel tempering” improve the situation somewhat, a method…

research product

Analysis of the incoherent intermediate scattering function in the framework of the idealized mode-coupling theory: A Monte Carlo study for polymer melts.

In this Monte Carlo simulation, we calculate the incoherent intermediate scattering function ${\mathrm{\ensuremath{\varphi}}}_{\mathit{q}}^{\mathit{s}}$(t) for a three-dimensional dense polymer melt after having made long relaxation runs in order to eliminate the history of the cooling procedure sufficiently. This function shows the signature of a two-step process in the temperature interval T\ensuremath{\in}[0.16,0.21] (the temperature is measured in units of an energy parameter introduced in the Hamiltonian of the model) whose time evolution was quantitatively analyzed in the framework of the idealized mode-coupling theory (MCT) within the \ensuremath{\beta}-relaxation regime. As a result…

research product

Static properties of end-tethered polymers in good solution: A comparison between different models

We present a comparison between results, obtained from different simulation models, for the static properties of end-tethered polymer layers in good solvent. Our analysis includes data from two previous studies--the bond fluctuation model of Wittmer et al. [J. Chem. Phys. 101, 4379 (1994)] and the off-lattice bead-spring model of Grest and Murat [Macromolecules 26, 3108 (1993)]. Additionally, we explore the properties of a similar off-lattice model simulated close to the Theta temperature. We show that the data for the bond fluctuation and the Grest-Murat model can be analyzed in terms of scaling theory because chains are swollen inside the Pincus blob. In the vicinity of the Theta point th…

research product

Molecular dynamics of supercooled polymer films

We present results of molecular dynamics simulations for a supercooled polymer melt confined between two smooth and purely repulsive walls. The thickness D of the film is about 7 times the bulk radius of gyration. For all temperatures studied, a significant increase of the monomer and chain mobilities with respect to the bulk is observed. Preliminary results suggest that structural relaxation times exhibit a power-law behavior in the vicinity of a critical temperature T c (D) 0.39 (in Lennard-Jones units). This estimate of T c (D) is about 14% smaller than the corresponding bulk value. Despite this significant decrease the time dependence of various mean-square displacements seems to be una…

research product

Simulation of the glass transition in polymeric systems: Evidence for an underlying phase transition?

Abstract The bond fluctuation model of polymer chains on sc lattices with an energy that favours long bonds can describe the slowing down of supercooled melts that approach the glass transition in qualitative similarity with various experiments. In this paper we focus on the question of whether there exists a correlation length that increases to large values when the temperature is lowered towards the glass transition. Two types of analysis are presented: firstly density oscillations near hard walls become long range, and the resulting correlation length becomes larger than the gyration radius, secondly oscillations in the pair correlation function in real space also become long range, and …

research product

Entropy theory and glass transition: A test by Monte Carlo simulation

This article reviews the results of a test of the Gibbs-DiMarzio theory by Monte Carlo Simulation. The simulation employed the bond-fluctuation model on a simple cubic lattice. This model incorporates two kinds of interactions: the excluded volume interaction among all monomers of the melt and an internal energy of the chains, which favors large bonds and makes the chains stiffen with decreasing temperature. The stiffening of the chains leads to an increase of their volume requirements, which competes with the packing constraints at low temperatures. This competition strongly slows down the structural relaxation of the melt and induces the glassy behavior. The model therefore takes into acc…

research product