6533b860fe1ef96bd12c38cd

RESEARCH PRODUCT

Approximations of positive operators and continuity of the spectral radius III

V. CasellesFrancesc Aràndiga

subject

Pure mathematicsSequenceOperator (computer programming)Rank (linear algebra)Spectral radiusSpectrum (functional analysis)General MedicineLimit (mathematics)Eigenvalues and eigenvectorsMathematicsResolvent

description

AbstractWe prove estimates on the speed of convergence of the ‘peripheral eigenvalues’ (and principal eigenvectors) of a sequence Tn of positive operators on a Banach lattice E to the peripheral eigenvalues of its limit operator T on E which is positive, irreducible and such that the spectral radius r(T) of T is a Riesz point of the spectrum of T (that is, a pole of the resolvent of T with a residuum of finite rank) under some conditions on the kind of approximation of Tn to T. These results sharpen results of convergence obtained by the authors in previous papers.

https://doi.org/10.1017/s1446788700037733