6533b860fe1ef96bd12c3944
RESEARCH PRODUCT
Neutrino Mass from Cosmology
Sergio PastorJulien Lesgourguessubject
Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Article SubjectCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyUpper and lower boundsPartícules (Física nuclear)CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyObservableBeta decaylcsh:QC1-999High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNeutrinolcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.
year | journal | country | edition | language |
---|---|---|---|---|
2012-12-26 |