0000000000353446

AUTHOR

Julien Lesgourgues

showing 14 related works from this author

Physics at a future Neutrino Factory and super-beam facility

2009

The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, …

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsPhysics::Instrumentation and DetectorsMUONIUM-ANTIMUONIUM CONVERSIONFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2LONG-BASE-LINE01 natural sciences7. Clean energyWARM DARK-MATTERNuclear physicsLEPTON-FLAVOR VIOLATIONELECTRIC-DIPOLE MOMENTHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ANOMALOUS MAGNETIC-MOMENT010306 general physicsNeutrino oscillationNeutrino physics; Neutrino factoryParticle Physics - PhenomenologyR-PARITY VIOLATIONPhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]LARGE EXTRA DIMENSIONSDOUBLE-BETA-DECAYNeutrino factoryFísicaMU-E CONVERSIONNeutrino physicsHigh Energy Physics - PhenomenologyExperimental High Energy PhysicsLarge extra dimensionCP violationPhysics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino
researchProduct

Current cosmological bounds on neutrino masses and relativistic relics

2004

We combine the most recent observations of large-scale structure (2dF and SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put constraints on flat cosmological models where the number of massive neutrinos and of massless relativistic relics are both left arbitrary. We discuss the impact of each dataset and of various priors on our bounds. For the standard case of three thermalized neutrinos, we find an upper bound on the total neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is quite insensitive to the splitting of the total mass between the th…

PhysicsNuclear and High Energy PhysicsParticle physicsCosmic microwave backgroundDark matterAstrophysics (astro-ph)FOS: Physical sciencesFísicaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsUpper and lower boundsCMB cold spotMassless particleHigh Energy Physics - PhenomenologySupernovaHigh Energy Physics - Phenomenology (hep-ph)Observational cosmologyNeutrino
researchProduct

Probing neutrino masses with future galaxy redshift surveys

2004

We perform a new study of future sensitivities of galaxy redshift surveys to the free-streaming effect caused by neutrino masses, adding the information on cosmological parameters from measurements of primary anisotropies of the cosmic microwave background (CMB). Our reference cosmological scenario has nine parameters and three different neutrino masses, with a hierarchy imposed by oscillation experiments. Within the present decade, the combination of the Sloan Digital Sky Survey (SDSS) and CMB data from the PLANCK experiment will have a 2-sigma detection threshold on the total neutrino mass close to 0.2 eV. This estimate is robust against the inclusion of extra free parameters in the refer…

Nuclear and High Energy PhysicsCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Observational cosmology0103 physical sciences010306 general physicsPhysics010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaOrder (ring theory)Redshift surveyRedshiftGalaxyHigh Energy Physics - Phenomenology[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]13. Climate actionNeutrino
researchProduct

Do observations prove that cosmological neutrinos are thermally distributed?

2005

It is usually assumed that relic neutrinos possess a Fermi-Dirac distribution, acquired during thermal equilibrium in the Early Universe. However, various mechanisms could introduce strong distortions in this distribution. We perform a Bayesian likelihood analysis including the first moments of the three active neutrino distributions as free parameters, and show that current cosmological observations of light element abundances, Cosmic Microwave Background (CMB) anisotropies and Large Scale Structures (LSS) are compatible with very large deviations from the standard picture. We also calculate the bounds on non-thermal distortions which can be expected from future observations, and stress th…

PhysicsNuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectCosmic microwave backgroundDark matterAstrophysics (astro-ph)FOS: Physical sciencesFísicaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsUniverseCosmologyCosmic neutrino backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesisNucleosynthesisNeutrinomedia_common
researchProduct

Neutrino cosmology and Planck

2014

Relic neutrinos play an important role in the evolution of the Universe, modifying some of the cosmological observables. We summarize the main aspects of cosmological neutrinos and describe how the precision of present cosmological data can be used to learn about neutrino properties. In particular, we discuss how cosmology provides information on the absolute scale of neutrino masses, complementary to beta decay and neutrinoless double-beta decay experiments. We explain why the combination of Planck temperature data with measurements of the baryon acoustic oscillation angular scale provides a strong bound on the sum of neutrino masses, 0.23 eV at the 95% confidence level, while the lensing …

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)General Physics and AstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsCosmologydark matterHigh Energy Physics - Experimentsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)PlanckAbsolute scaleParticle Physics - PhenomenologyPhysicsOscillationneutrino massesHigh Energy Physics::PhenomenologyFísicaObservablePlanck temperatureBaryonHigh Energy Physics - Phenomenology13. Climate action[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]symbolsHigh Energy Physics::ExperimentNeutrinocosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Probing neutrino masses with CMB lensing extraction

2005

We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and PLANCK to the non-zero total neutrino mass M_nu indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M_nu by a factor of order four. The combination of data from PLANCK and the SAMPAN mini-satellite project would lead to sigma(M_nu) = 0.1 eV, while a value as small as sigma(M_nu) = 0…

Nuclear and High Energy PhysicsParticle physicsCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanckNeutrino oscillation010303 astronomy & astrophysicsWeak gravitational lensingPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsFísicaSpectral densityHigh Energy Physics - PhenomenologyDark energysymbolsNeutrino
researchProduct

Calculation of the local density of relic neutrinos

2017

Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV. We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the $N$-one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritiu…

AstrofísicaPhysicsSterile neutrinoParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)CosmologiaCOSMIC cancer database010308 nuclear & particles physicsMilky WayHigh Energy Physics::PhenomenologyDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesCosmic neutrino backgroundBaryon0103 physical sciencesNeutrino010303 astronomy & astrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Status of Light Sterile Neutrino Searches

2020

A number of anomalous results in short-baseline oscillation may hint at the existence of one or more light sterile neutrino states in the eV mass range and have triggered a wave of new experimental efforts to search for a definite signature of oscillations between active and sterile neutrino states. The present paper aims to provide a comprehensive review on the status of light sterile neutrino searches in mid-2019: we discuss not only the basic experimental approaches and sensitivities of reactor, source, atmospheric, and accelerator neutrino oscillation experiments but also the complementary bounds arising from direct neutrino mass experiments and cosmological observations. Moreover, we r…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBibliographyddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsOscillationHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Cosmological modelHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentAtmospheric neutrinoNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Massive neutrinos and cosmology

2006

The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combin…

High Energy Physics - TheoryPhysicsCosmic microwave backgroundHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)General Physics and AstronomyFísicaFOS: Physical sciencesObservableAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCMB cold spotBeta decayCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Data analysisMass scaleHigh Energy Physics::ExperimentNeutrino
researchProduct

Measuring the cosmological background of relativistic with the Wilkinson Microwave Anisotropy Probe

2003

We show that the first year results of the Wilkinson Microwave Anisotropy Probe (WMAP) constrain very efficiently the energy density in relativistic particles in the Universe. We derive new bounds on additional relativistic degrees of freedom expressed in terms of an excess in the effective number of light neutrinos $\ensuremath{\Delta}{N}_{\mathrm{eff}}.$ Within the flat \ensuremath{\Lambda}CDM scenario, the allowed range is $\ensuremath{\Delta}{N}_{\mathrm{eff}}l6$ (95% confidence level) using WMAP data only, or $\ensuremath{-}2.6l\ensuremath{\Delta}{N}_{\mathrm{eff}}l4$ with the prior ${H}_{0}=72\ifmmode\pm\else\textpm\fi{}8\mathrm{km}{\mathrm{s}}^{\ensuremath{-}1}{\mathrm{Mpc}}^{\ensure…

PhysicsNuclear and High Energy PhysicsParticle physicsCosmic microwave backgroundFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsLambdaCMB cold spotRelativistic particleBig Bang nucleosynthesisObservational cosmologyNeutrinoAnisotropy
researchProduct

Neutrino Mass from Cosmology

2012

Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good p…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Article SubjectCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyUpper and lower boundsPartícules (Física nuclear)CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyObservableBeta decaylcsh:QC1-999High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNeutrinolcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Model independent constraints on mass-varying neutrino scenarios

2009

Models of dark energy in which neutrinos interact with the scalar field supposed to be responsible for the acceleration of the Universe usually imply a variation of the neutrino masses on cosmological time scales. In this work we propose a parametrization for the neutrino mass variation that captures the essentials of those scenarios and allows one to constrain them in a model independent way, that is, without resorting to any particular scalar field model. Using WMAP 5 yr data combined with the matter power spectrum of SDSS and 2dFGRS, the limit on the present value of the neutrino mass is m(0) equivalent to m(nu)(z = 0) 0), totally consistent with no mass variation. These stringent bounds…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyAccelerating UniverseCosmology and Nongalactic Astrophysics (astro-ph.CO)Microwave Background Anisotropiesmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsCosmological constant01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPower-SpectrumNeutrino oscillation010303 astronomy & astrophysicsmedia_commonPhysicsMatter010308 nuclear & particles physicsMatter power spectrumHigh Energy Physics::PhenomenologyFísicaHubble-Space-TelescopeDark EnergyCMB cold spotCosmological ConstantUniverseHigh Energy Physics - PhenomenologySupernovaeDark energyHigh Energy Physics::ExperimentNeutrinoScalar fieldAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Neutrino clustering in the Milky Way and beyond

2019

The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmological relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution o…

PhysicsAstrofísicaCosmologiaCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesCosmic neutrino backgroundHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesNeutrinoCluster analysisAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct