6533b860fe1ef96bd12c3a96

RESEARCH PRODUCT

Enhancement in Phospholipase D Activity as a New Proposed Molecular Mechanism of Haloperidol-Induced Neurotoxicity

Marek KrzystanekKatarzyna SkałackaEwa KrzystanekArtur Pałasz

subject

0301 basic medicineFluphenazineolanzapinePhospholipasePharmacologyCatalysishaloperidollcsh:ChemistryInorganic Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineneurotoxicityHaloperidolmedicineAnimalsphospholipase DPhospholipase D activityPhysical and Theoretical ChemistryChlorpromazinechlorpromazinelcsh:QH301-705.5Molecular BiologySpectroscopy030102 biochemistry & molecular biologyPhospholipase DCommunicationOrganic ChemistryGeneral MedicinePhosphatidic acidfluphenazineRatsComputer Science ApplicationsEnzyme Activationenzymes and coenzymes (carbohydrates)lcsh:Biology (General)lcsh:QD1-999chemistryMechanism of actionneuroprotectionlipids (amino acids peptides and proteins)medicine.symptom030217 neurology & neurosurgerymedicine.drug

description

Membrane phospholipase D (PLD) is associated with numerous neuronal functions, such as axonal growth, synaptogenesis, formation of secretory vesicles, neurodegeneration, and apoptosis. PLD acts mainly on phosphatidylcholine, from which phosphatidic acid (PA) and choline are formed. In turn, PA is a key element of the PLD-dependent secondary messenger system. Changes in PLD activity are associated with the mechanism of action of olanzapine, an atypical antipsychotic. The aim of the present study was to assess the effect of short-term administration of the first-generation antipsychotic drugs haloperidol, chlorpromazine, and fluphenazine on membrane PLD activity in the rat brain. Animals were sacrificed for a time equal to the half-life of the antipsychotic drug in the brain, then the membranes in which PLD activity was determined were isolated from the tissue. The results indicate that only haloperidol in a higher dose increases the activity of phospholipase D. Such a mechanism of action of haloperidol has not been described previously. Induction of PLD activity by haloperidol may be related to its mechanism of cytotoxicity. The finding could justify the use of PLD inhibitors as protective drugs against the cytotoxicity of first-generation antipsychotic drugs like haloperidol.

10.3390/ijms21239265https://www.mdpi.com/1422-0067/21/23/9265