6533b860fe1ef96bd12c3b15

RESEARCH PRODUCT

The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes.

Ramiro JoverCarla GuzmánJose M. ValdivielsoPolina SoluyanovaJosé V. CastellTeresa Martinez-sena

subject

0301 basic medicinemusculoskeletal diseasesmedicine.medical_specialtyVitaminesLithocholic acidMice Knockout ApoECèl·luleslcsh:QR1-502Phospholipidvitamin DBiochemistryCalcitriol receptorlcsh:MicrobiologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineBiomolèculesDownregulation and upregulationInternal medicinelipid metabolismmedicinepolycyclic compoundsAnimalsHumansvitamin D receptorMolecular BiologyPhospholipidsTriglyceridesPhosphatidylethanolaminedigestive oral and skin physiologyhuman hepatocytesLipid metabolismMetabolismHep G2 Cells030104 developmental biologyEndocrinologychemistryGene Expression Regulation030220 oncology & carcinogenesisHepatocytesReceptors Calcitriollipids (amino acids peptides and proteins)Intracellular

description

The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism)

10.3390/biom10030493https://pubmed.ncbi.nlm.nih.gov/32213983