6533b860fe1ef96bd12c3bbf
RESEARCH PRODUCT
Euler Characteristics of Moduli Spaces of Curves
Gilberto BiniJohn Harersubject
euler characteristicPure mathematicsModular equationApplied MathematicsGeneral MathematicsRiemann surfaceMathematical analysisModuli spaceModuli of algebraic curvesRiemann–Hurwitz formulasymbols.namesakeMathematics - Algebraic GeometryMathematics::Algebraic GeometryEuler characteristicGenus (mathematics)symbolsFOS: Mathematicsmoduli spaceAlgebraic Topology (math.AT)Compactification (mathematics)Settore MAT/03 - GeometriaMathematics - Algebraic TopologyAlgebraic Geometry (math.AG)Mathematicsdescription
Let ${mathcal M}_g^n$ be the moduli space of n-pointed Riemann surfaces of genus g. Denote by ${\bar {\mathcal M}}_g^n$ the Deligne-Mumford compactification of ${mathcal M}_g^n$. In the present paper, we calculate the orbifold and the ordinary Euler characteristic of ${\bar {\mathcal M}}_g^n$ for any g and n such that n>2-2g.
year | journal | country | edition | language |
---|---|---|---|---|
2005-06-05 |