6533b861fe1ef96bd12c439e

RESEARCH PRODUCT

On operads, bimodules and analytic functors

André JoyalNicola Gambino

subject

General Mathematics0102 computer and information sciences01 natural sciencesMathematics::Algebraic TopologyQuantitative Biology::Cell BehaviorMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics::Category Theory18D50 55P48 18D05 18C15FOS: MathematicsAlgebraic Topology (math.AT)Category Theory (math.CT)Mathematics - Algebraic Topology0101 mathematicsMathematicsFunctorOperad bimodule analytic functor bicategoryTheoryMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsOrder (ring theory)Mathematics - Category Theory16. Peace & justiceBicategoryAlgebraCartesian closed category010201 computation theory & mathematicsBimodule

description

We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.

10.1090/memo/1184http://arxiv.org/abs/1405.7270