6533b861fe1ef96bd12c4485

RESEARCH PRODUCT

Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

Daniel RamónPatricia MartorellInés TiscorniaSilvia LlopisSalvador GenovésBenoît FolignéMariela Bollati-fogolínIsabelle ChambaudA. P. MuletTamara Fernández-caleroAgustín MontserratGianfranco GromponeNuria González

subject

MESH: Signal TransductionMESH: InflammationAgingAnatomy and PhysiologyAntioxidantMouseNon-Clinical MedicineApplied Microbiologymedicine.medical_treatment[SDV]Life Sciences [q-bio]MESH: HT29 Cellslcsh:Medicinemedicine.disease_causelaw.inventionMiceProbiotic0302 clinical medicinelawLactobacillusMESH: ColitisInsulinMESH: Animalslcsh:ScienceCaenorhabditis elegans2. Zero hunger0303 health sciencesMultidisciplinaryMESH: Oxidative StressbiologyMESH: Reactive Oxygen SpeciesForkhead Transcription FactorsAnimal ModelsMESH: Transcription FactorsMESH: Caenorhabditis elegans ProteinsColitis3. Good healthMESH: Trinitrobenzenesulfonic Acid[SDV] Life Sciences [q-bio]MESH: LongevityMedicineFemaleHT29 CellsResearch ArticleBiotechnologySignal TransductionMESH: Receptor Insulinmedicine.drug_classLongevityMESH: InsulinMicrobiologyAnti-inflammatoryMicrobiologyIndustrial Microbiology03 medical and health sciencesMESH: Gene Expression ProfilingModel OrganismsSpecies SpecificityLactobacillus rhamnosusMESH: Caenorhabditis elegansmedicineAnimalsHumansMESH: Species SpecificityCaenorhabditis elegansCaenorhabditis elegans ProteinsBiologyMESH: Mice030304 developmental biologyInflammationHealth Care PolicyMESH: HumansGene Expression ProfilingProbioticslcsh:Rbiology.organism_classificationReceptor InsulinLactobacillusOxidative StressTrinitrobenzenesulfonic AcidQuality of Lifelcsh:QPhysiological ProcessesReactive Oxygen SpeciesMESH: LactobacillusMESH: Female030217 neurology & neurosurgeryOxidative stressBacteriaMESH: ProbioticsTranscription Factors

description

International audience; Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2)O(2)). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.

10.1371/journal.pone.0052493https://hal-riip.archives-ouvertes.fr/pasteur-00846772/document