6533b861fe1ef96bd12c44a8

RESEARCH PRODUCT

Characteristic Sturmian words are extremal for the Critical Factorization Theorem

Antonio RestivoFilippo Mignosi

subject

Critical Factorization TheoremDiscrete mathematicsPeriodicitySettore INF/01 - InformaticaCombinatorics on wordsGeneral Computer ScienceSturmian wordSturmian wordsFunction (mathematics)Critical point (mathematics)Theoretical Computer ScienceCombinatoricsCombinatorics on wordssymbols.namesakeBounded functionWeierstrass factorization theoremsymbolsFibonacci wordWord (group theory)MathematicsComputer Science(all)

description

We prove that characteristic Sturmian words are extremal for the Critical Factorization Theorem (CFT) in the following sense. If p x ( n ) denotes the local period of an infinite word x at point n , we prove that x is a characteristic Sturmian word if and only if p x ( n ) is smaller than or equal to n + 1 for all n ≥ 1 and it is equal to n + 1 for infinitely many integers n . This result is extremal with respect to the \{CFT\} since a consequence of the \{CFT\} is that, for any infinite recurrent word x, either the function p x is bounded, and in such a case x is periodic, or p x ( n ) ≥ n + 1 for infinitely many integers n . As a byproduct of the techniques used in the paper we extend a result of Harju and Nowotka (2002) in [18] stating that any finite Fibonacci word f n , n ≥ 5 , has only one critical point. Indeed we determine the exact number of critical points in any finite standard Sturmian word.

10.1016/j.tcs.2012.03.012http://dx.doi.org/10.1016/j.tcs.2012.03.012