6533b861fe1ef96bd12c4c27

RESEARCH PRODUCT

Mond's conjecture for maps between curves

Daiane Alice Henrique AmentJuan J. Nuño-ballesteros

subject

ConjectureDegree (graph theory)Plane curveGeneral MathematicsImage (category theory)010102 general mathematicsMathematical analysisCodimension01 natural sciencesMilnor numberCombinatoricsSingularity0103 physical sciencesGerm010307 mathematical physics0101 mathematicsMathematics

description

A theorem by D. Mond shows that if f:(C,0)→C2,0 is finite and has has degree one onto its image (Y, 0), then the Ae-codimension is less than or equal to the image Milnor number μI(f), with equality if and only if (Y, 0) is weighted homogeneous. Here we generalize this result to the case of a map germ f:(X,0)→C2,0, where (X, 0) is a plane curve singularity.

https://doi.org/10.1002/mana.201600483