6533b861fe1ef96bd12c4e9a

RESEARCH PRODUCT

Large-N kinetic theory for highly occupied systems

Kirill BoguslavskiR. WalzJürgen Berges

subject

Field (physics)Lattice field theoryFOS: Physical sciencesFixed point01 natural sciencesMany-body problemHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessirontanonperturbative effects in field theoryQuantum field theory010306 general physicsdynamiikkaPhysicsta114010308 nuclear & particles physicsScalar (physics)finite temperature field theoryultracold gasesHigh Energy Physics - PhenomenologyDistribution functionClassical mechanicsQuantum Gases (cond-mat.quant-gas)Kinetic theory of gaseskvanttikenttäteoriaCondensed Matter - Quantum Gasesrelativistic heavy-ion collisions

description

We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. This allows us to compute the universal scaling form of the distribution function at an infrared nonthermal fixed point within a kinetic description and we compare to existing lattice field theory simulation results.

10.1103/physrevd.97.116011http://arxiv.org/abs/1710.11146