0000000000811855

AUTHOR

Jürgen Berges

showing 2 related works from this author

Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

2017

We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. As a model system we consider O(N)-symmetric scalar field theories. We use classical-statistical real-time simulations, as well as a systematic 1/N expansion of the quantum (2PI) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions the …

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAnnihilationta114Field (physics)010308 nuclear & particles physicsFOS: Physical sciencesBose-Einstein condensatesCharge (physics)01 natural scienceslaw.inventionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Q-balllawQuantum electrodynamics0103 physical sciences010306 general physicsScalar fieldQuantumEffective actionBose–Einstein condensateAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Large-N kinetic theory for highly occupied systems

2018

We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. T…

Field (physics)Lattice field theoryFOS: Physical sciencesFixed point01 natural sciencesMany-body problemHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessirontanonperturbative effects in field theoryQuantum field theory010306 general physicsdynamiikkaPhysicsta114010308 nuclear & particles physicsScalar (physics)finite temperature field theoryultracold gasesHigh Energy Physics - PhenomenologyDistribution functionClassical mechanicsQuantum Gases (cond-mat.quant-gas)Kinetic theory of gaseskvanttikenttäteoriaCondensed Matter - Quantum Gasesrelativistic heavy-ion collisions
researchProduct