6533b861fe1ef96bd12c4ee7
RESEARCH PRODUCT
Entanglement control in hybrid optomechanical systems
Mauro PaternostroMauro PaternostroG. De ChiaraG. M. PalmaB. Rogerssubject
Condensed Matter::Quantum GasesPulsed laserPhysicsQuantum PhysicsMesoscopic physicsbusiness.industryFOS: Physical sciencesPhysics::OpticsQuantum entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionOpticsQuantum Gases (cond-mat.quant-gas)lawOptical cavityquantum control optomechanical systems cavity QEDOptoelectronicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesbusinessLaser lightdescription
We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.
year | journal | country | edition | language |
---|---|---|---|---|
2012-10-18 | Physical Review A |