6533b861fe1ef96bd12c5708

RESEARCH PRODUCT

Superoxide dismutase activity of ternary copper complexes of sulfathiazole and imidazole derivatives. Synthesis and properties of [CuL2(R-Him)2] [HL=4-amino-N-(thiazol-2-yl)benzenesulfonamide, R-Him=4-methylimidazole, 4,4-dimethylimidazoline or 1,2-dimethylimidazole]. Crystal structure of [CuL2(4,4-dimethylimidazoline)2]

J. CasanovaGloria AlzuetJoaquín BorrásJose Antonio RamirezJulio LatorreSacramento Ferrer

subject

Stereochemistrychemistry.chemical_elementCrystal structureChromophoreCopperInorganic ChemistryBond lengthchemistry.chemical_compoundCrystallographychemistryOctahedral molecular geometryMaterials ChemistryImidazole4-MethylimidazoleMolecular orbitalPhysical and Theoretical Chemistry

description

Abstract New ternary copper(II) complexes of sulfathiazole (4-amino-N-(thiazol-2-yl)benzenesulfonamide)(HL) and methyl imidazole derivatives have been synthesised and characterised. The crystal structure of the complex [CuL2(4,4-dmHim)2] (1) [4,4-dmHim=4,4-dimethylimidazoline] has been determined. The copper centre has a quasi regular square planar environment with Cu-nitrogen bond lengths ranging from 1.952 to 2.010 A. From the spectroscopic properties of the complexes [CuL2(1,2-dmHim)2] (2) [1,2-dmHim=1,2-dimethylimidazole] and [CuL2(4-mHim)2] (3) [4-mHim=4-methylimidazole] a distorted tetragonal octahedral geometry is deduced. The compounds showed SOD mimetic activity in fact, a low concentration of the complexes catalyses the dismutation of superoxide at biological pH. This SOD activity is correlated with their structural properties. Using Extended Huckel Molecular Orbital Calculations the one-electron energy levels of the CuN4 chromophore in complex 1 are reported and correlated with the data of the CuN6 and CuN5 chromophores of the previously reported [CuL2(Him)2]·MeOH and [CuL2(mim)2]·H2O compounds. In addition, the influence of the geometry distortion on the composition and energy of the molecular orbitals is described using idealised models.

https://doi.org/10.1016/s0020-1693(00)00080-3