6533b861fe1ef96bd12c5738
RESEARCH PRODUCT
Determination of the absolute branching fractions of D0→K−e+νe and D+→K¯0e+νe
I. UmanMo X. H.F. De MoriE. M. GersabeckHe K. L.L. Y. DongX. ZengX. L. LuoZ. J. XiaoR. KliemtHu J. F.A. Q. GuoC. W. WangFu C. D.A. MangoniK. BegzsurenYe M. H.W. M. SongX. F. WangA. GuskovXu Q. J.T. JohanssonJ. F. ChangM. HimmelreichW. P. WangF. BianchiQi T. Y.Xujin YuanY. F. WangWu J. F.Xu Y. C.O. B. KolcuW. H. WangX. CaiL. LavezziT. YuYan ZhangGu M. H.M. QiJi Q. P.X. K. ZhouX. WuW. P. WangD. Y. LiuLu X. L.Y. C. ZhuT. J. MinJi X. L.H. J. YangT. T. HanK. J. ZhuLi XiaoyuS. B. LiuY. NefedovY. YuanK. RavindranS. J. ZhaoZ. H. QinWenbin QianG. CibinettoY. G. GaoLi LeiJie FengHuanhuan LiuX. L. WangTong ZhuH. XiaoT. HeldLi P. R.G. FeliciAndrzej KupscQ. LiuQi H. R.G. Y. TangM. L. ChenI. B. NikolaevK. Y. LiuW. Ikegami AnderssonC. ZhongYao WangKe B. C.Wu L. H.X. H. XieXu YanLi Z. Y.L. GongA. G. DenigL. G. XiaS. F. ZhangA. AmorosoJ. B. ZhaoQ. P. JiI. R. BoykoY. F. WangZ. Y. ZhangJie ZhaoAlexey ZhemchugovA. BortoneY. K. SunS. SpataroY. X. ZhaoY. H. XieA. DbeyssiZ. NingS. Y. XiaoAn M. R.S. H. ZhangX. Y. ShenH. J. LiL. WollenbergJ. H. YinLu H. J.M. ShaoC. X. YueM. ScodeggioF. LiT. HussainW. X. GongJianyu ZhangF. H. LiuNicolas BergerXuanhong LouViktor ThorénNasser Kalantar-nayestanakiX. K. ZhouGu Y. T.Angelo RivettiG. WilkinsonXingchao DaiA. PathakY. G. XieX. D. ZhangD. C. ShanMa R. Q.H. M. LiuW. S. ChengH. LiangS. AhmedC. SchnierY. Q. WangYao ZhangG. LiLei ZhangC. H. LiA. SarantsevJ. W. ZhangR. AlibertiD. H. WeiJ. S. LangeY. X. YangDu S. X.Y. DingJ. L. LiuR. S. ShiY. B. LiuMagnus WolkeYue PanTao LuoG. F. CaoLi X. H.X. T. HuangMa H. L.Y. F. LiangG. RongM. MaggioraLing ZhaoYu J. S.I. BalossinoHu H. M.Wu L. J.Zongyuan WangH. J. WangB. J. LiuLi S. Y.T. Y. XingD. Y. ChenC. Q. FengLi W. D.X. R. ChenZujian WangT. LiuJ. F. QiuGe P. T.B. WangP. KieseL. FavaS. L. YangH. Y. ZhangZ. Y. DengM. X. LuoDylan Jaide WhiteD. V. DedovichC. H. HeinzZ. A. LiuH. B. LiuLi W. G.Z. H. LeiF. WeidnerYuan HouG. R. LiaoX D ShiM. AlbrechtW. KühnHai-tian WangF. E. MaasZhi YangM. FritschR. A. BriereY. J. MaoZ. Y. YouM. H. YeH. X. YangF. NerlingI. GarziaT. HuX. S. JiangJ. LibbyQu S. Q.Ma Q. M.Yu C. X.X. Q. HaoLi D. M.Lei ZhaoS. NakhoulM. KavatsyukLi J. S.Q. OuyangX. H. BaiP. W. LuoB. KopfW. Y. HanYaquan FangM. GrecoV. PrasadMa R. T.Z. L. HouZ. A. ZhuShou-hua ZhuS. JaegerGu L. M.P. LarinS. S. FangC. Y. GuanH. C. ShiO. BakinaZiyi WangShulei ZhangJohn Jake LaneGuoqiang YuL. L. WangH. CaiYi JinSu K. X.C. P. ShenL. Q. HuangK. SchoenningB. S. ZouHuihui LiuH. S. ChenR. E. De BoerWei XuP. AdlarsonM. G. ZhaoY. B. LiuMo Y. J.Qi K. H.M. Q. JingP. X. ShenQ. ZhaoR. P. GuoJ. ZhuZ. WuH. L. DaiY. Z. SunM. Z. WangV. RodinJimin ZhaoXiao-rui LyuB. X. ZhangMa M. M.S. JanchivJ. G. MesschendorpY. BanP. WeidenkaffLi C. H.G. X. SunLi YanQ. A. MalikG. MezzadriW. C. YanM. KuemmelMatthew Glenn KurthZhiqiang LiuY. L. FanC. Z. YuanI. K. KeshkC. F. RedmerN. CaoM. N. AchasovL. P. ZhouZhiqing ZhangWen-zhao LiuZ. JiaoM. BertaniKe WangZ. P. MaoP. PatteriLu J. G.F. FeldbauerW. Y. SunL. YangZ. L. HuangMa X. X.H. F. ShenJ. FangJi Y. Y.X. F. CuiS. P. WenY. B. ZhaoZ. X. MengFeng LiuX. SunW. ShanLi YuanC. X. LinM. AblikimCh. RosnerJ. F. ShangguanMeng WangMuhammad IrshadAlexander Leon GilmanM. RumpGang ZhaoA. A. ZafarJ. DongR. PolingLi H. B.Yu B. X.F. H. HeinsiusLi ChengLi J. Q.F. A. HarrisW. L. ChangJ. BlomsX. S. QinX. R. ZhouN. HüskenS. NisarC. L. LuoG. S. HuangC. J. TangY. HuLu J. D.Y. P. LuChristoph HeroldMa L. L.H. Y. ZhangH. LeithoffJ. Q. ZhangLi KeW. J. ZhuQ. ZhouX. D. ShiDan WangT. HoltmannS. GuJ. F. SunJ. Y. LiuS. MarcelloY. ZengK. H. RashidZhe SunM. KuessnerS. LussoJi X. B.Li X. L.Li L. K.Y. T. LiangB. ZhongL. B. GuoG. F. ChenY. B. ChenJ. Z. ZhangL. KochA. KhoukazH. S. SangJ. J. SongFang LiuL. SunTao SunX. DongA. N. ZhuS. J. ChenJ. Y. ZhangG. A. ChelkovXu X. P.Y. N. GaoR. Baldini FerroliYanping HuangLi J. L.Y. ZhangXu ShanKrisztian PetersS. MaldeM. Z. WangA. CalcaterraZ. G. ZhaoL. Z. LiaoFeng YanY. K. HengY. Y. WangYu BaiH. H. ZhangXiangcheng PanM. LellmannJ. X. TengS. MaldanerLu Y. P.Haiping PengZhenxiong YuanU. WiednerI. DenysenkoR. FarinelliLibo ZhangH. MuramatsuPeilian LiuM. PelizaeusY. X. TanX. P. QinMa F. C.F. F. SuiR. KiuchiZ. J. ChenShuai LiuW. H. TianB. ZhengR. G. PingY. H. ZhengCong-feng QiaoN. Yu. MuchnoiXu G. F.X. S. KangGuangyi ZhangY. H. ZhangS. L. OlsenZ. Y. WangTeresa LenzW. ImoehlX. H. LiuL. Q. QinM. Y. DongC. GengK. GoetzenMa X. Y.A. LavaniaA. Q. ZhangJ. H. ZouL. D. LiuS. S. SunR. E. MitchellC. X. LiuLu F. X.W. B. YanS. PacettiY. H. TanR. KappertS. JinJ. B. JiaoH. K. SunS. QianQ. AnJialun PingX. Y. ZhangX. L. WangJ. B. LiuY. J. SunYifan YangY. SchelhaasH. R. QiY. P. GuoSerkant Ali CetinM. RoloF. CossioK. J. ZhuZ. QianH. B. JiangJiawei ZhangW. GradlY. H. ZhengY. X. SongJ. TangYunlong ZhangM. H. LiuD. BettoniSu P. P.J. L. ZhangJianping ZhengK. Y. LiuJ. J. ZhangM. DestefanisG. Y. HouC. DongS. SosioJoachim Petterssonsubject
PhysicsParticle physicsMeson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronBranching (polymer chemistry)01 natural sciencesReconstruction methodIsospin0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsEnergy (signal processing)Bar (unit)description
Using 2.93 fb$^{-1}$ of $e^+e^-$ collision data collected with the BESIII detector at a center-of-mass energy of 3.773~GeV, we measure the absolute branching fractions of the decays $D^0\to K^-e^+\nu_e$ and $D^+\to \bar K^0 e^+\nu_e$ to be $(3.574\pm0.031_{\rm stat}\pm 0.025_{\rm syst})\%$ and $(8.70\pm0.14_{\rm stat}\pm 0.16_{\rm syst})\%$, respectively. Starting with the process $e^+e^-\to D\bar{D}$, a new reconstruction method is employed to select events that contain candidates for both $D\to \bar Ke^+\nu_e$ and $\bar D\to Ke^-\bar \nu_e$ decays. The branching fractions reported in this work are consistent within uncertainties with previous BESIII measurements that selected events containing $D\to \bar Ke^+\nu_e$ and inclusive hadronic $\bar D$ decays. Combining our results with the lifetimes of the $D^0$ and $D^+$ mesons and the previous BESIII measurements leads to a ratio of the two decay partial widths of $\frac{\bar \Gamma_{D^0\to K^{-}e^+\nu_{e}}}{\bar \Gamma_{D^{+}\to \bar K^{0}e^+\nu_{e}}}=1.040\pm0.021$. This ratio supports isospin symmetry in the $D^0\to K^-e^+\nu_e$ and $D^+\to \bar K^0 e^+\nu_e$ decays within $1.9\sigma$.
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-15 | Physical Review D |