6533b861fe1ef96bd12c5745
RESEARCH PRODUCT
Review on Raman scattering in semiconductor nanowires: I. theory
Andrés Cantarerosubject
Materials scienceCondensed matter physicsScatteringPhononNanowirePhysics::OpticsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsLight scatteringElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeX-ray Raman scatteringsymbolsRaman spectroscopyRaman scatteringWurtzite crystal structuredescription
Raman scattering is a nondestructive technique that is able to supply information on the crystal and electronic structures, strain, temperature, phonon-phonon, and electron-phonon interaction. In the particular case of semiconductor nanowires, Raman scattering provides addi- tional information related to surfaces. Although correct, a theoretical approach to analyze the surface optical modes loses critical information when retardation is neglected. A comparison of the retarded and unretarded approaches clarifies the role of the electric and magnetic polarization in the Raman selection rules. Since most III-V compounds growing in the zincblende phase change their crystal structure to wurtzite when growing as nanowires, the polariton description will be particularized for these two important crystal phases. Confined phonons exist in cylin- drical nanowires and couple with longitudinal and transverse modes due to the presence of the nanowire's surface. This coupling vanishes in the case of rotational symmetry. The boundary conditions of the electromagnetic fields on small-size nanowires (antenna effect) have a dramatic effect on the polarization properties of a Raman spectrum. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) (DOI: 10.1117/1.JNP.7.071598)
year | journal | country | edition | language |
---|---|---|---|---|
2013-11-21 | Journal of Nanophotonics |