6533b861fe1ef96bd12c585b
RESEARCH PRODUCT
Electrospun Polyhydroxyethyl-Aspartamide-Polylactic Acid Scaffold for Biliary Duct Repair: A Preliminary In Vivo Evaluation
Giuseppe DamianoMariano LicciardiA.i. Lo MonteA. MaffongelliGiuseppe BuscemiSalvatore BuscemiGiovanni CassataVincenzo Davide PalumboCalogero FioricaS. FazzottaS. FicarellaLeonardo GulottaFabio Salvatore Palumbosubject
ScaffoldMaterials sciencePolyesters03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBioabsorbable scaffold Bioengineered biliary duct Experimental surgeryTissue engineeringPolylactic acidIn vivomedicineAnimalsTransplantationTissue EngineeringTissue ScaffoldsBile ductGallbladderBiliary Tract Surgical ProceduresSettore MED/18 - Chirurgia Generalemedicine.anatomical_structurechemistryBiliary tractSettore CHIM/09 - Farmaceutico Tecnologico Applicativo030220 oncology & carcinogenesisPolycaprolactone030211 gastroenterology & hepatologySurgeryBile DuctsRabbitsBiomedical engineeringdescription
Abstract Tissue engineering has emerged as a new approach with the potential to overcome the limitations of traditional therapies. The objective of this study was to test whether our polymeric scaffold is able to resist the corrosive action of bile and to support a cell's infiltration and neoangiogenesis with the aim of using it as a biodegradable tissue substitute for serious bile duct injuries. In particular, a resorbable electrospun polyhydroxyethyl-aspartamide–polylactic acid (90 mol% PHEA, 10 mol% PLA)/polycaprolactone (50:50 w/w) plate scaffold was implanted into rabbit gallbladder to assess the in vivo effects of the lytic action of the bile on the scaffold structure and then as a tubular scaffold to create a biliary-digestive anastomosis as well. For the above evaluation, 5 animals were used and killed after 15 days and 5 animals after 3 months. At 15-day and 3-month follow-ups, the fibrillar structure was not digested by lytic action bile. The fibers of the scaffold were organized despite being in contact with bile action. A new epithelial tissue appeared on the scaffold surface suggesting the suitability of this scaffold for future studies of the repair of biliary tract injuries with the use of resorbable copolymer on biliary injuries.
year | journal | country | edition | language |
---|---|---|---|---|
2017-05-01 |