6533b861fe1ef96bd12c594a

RESEARCH PRODUCT

Shear capacity in concrete beams reinforced by stirrups with two different inclinations

Piero ColajanniGiuseppe ManciniNino SpinellaLidia La MendolaAntonino Recupero

subject

Different inclined stirrupsModified Compression Field TheoryEngineeringShear strength; Different inclined stirrups; Analytical model; Plastic model; Stress fieldGeneralizationbusiness.industryStructural engineeringStress fieldAnalytical modelFinite element methodStress fieldDifferent inclined stirrupSettore ICAR/09 - Tecnica Delle CostruzioniShear strengthRobustness (computer science)Shear strengthAnalytical model; Different inclined stirrups; Plastic model; Shear strength; Stress fieldGeotechnical engineeringReinforcementbusinessPlastic modelCivil and Structural EngineeringShear capacity

description

Abstract A model for the estimation of shear capacity in Reinforced Concrete (RC) beams with web reinforcement is provided by introducing a generalization of classical plastic Nielsen’s model, which is based on the variable-inclination stress-field approach. The proposed model is able to predict the shear capacity in RC beams reinforced by means of stirrups having two different inclinations and longitudinal web bars. A numerical comparison with the results of experimental tests and those provided by a Finite Element Model (FEM) based on the well known theory of Modified Compression Field Theory (MCFT) is carried out for validating the robustness of the proposed model. Finally, a set of parametrical analyses demonstrates the efficiency of the proposed double transverse-reinforcement system in enhancing the shear capacity of RC beams.

10.1016/j.engstruct.2014.10.011http://hdl.handle.net/10447/102650