6533b861fe1ef96bd12c5a8b

RESEARCH PRODUCT

On a representation theorem for finitely exchangeable random vectors

Svante JansonTakis KonstantopoulosLinglong Yuan

subject

Discrete mathematicsRepresentation theoremMultivariate random variableApplied MathematicsSigned measureProbability (math.PR)010102 general mathematicsSpace (mathematics)01 natural sciencesMeasure (mathematics)60G09 (Primary) 60G55 62E99 (Secondary)010104 statistics & probabilityHomogeneous polynomialFOS: Mathematics0101 mathematicsMathematics - ProbabilityAnalysisMixing (physics)MathematicsProbability measure

description

A random vector $X=(X_1,\ldots,X_n)$ with the $X_i$ taking values in an arbitrary measurable space $(S, \mathscr{S})$ is exchangeable if its law is the same as that of $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for any permutation $\sigma$. We give an alternative and shorter proof of the representation result (Jaynes \cite{Jay86} and Kerns and Sz\'ekely \cite{KS06}) stating that the law of $X$ is a mixture of product probability measures with respect to a signed mixing measure. The result is "finitistic" in nature meaning that it is a matter of linear algebra for finite $S$. The passing from finite $S$ to an arbitrary one may pose some measure-theoretic difficulties which are avoided by our proof. The mixing signed measure is not unique (examples are given), but we pay more attention to the one constructed in the proof ("canonical mixing measure") by pointing out some of its characteristics. The mixing measure is, in general, defined on the space of probability measures on $S$, but for $S=\mathbb{R}$, one can choose a mixing measure on $\mathbb{R}^n$.

https://doi.org/10.1016/j.jmaa.2016.04.070