6533b862fe1ef96bd12c5e9d

RESEARCH PRODUCT

Algorithms for {K, s+1}-potent matrix constructions

Leila Lebtahi Ep-kadi-hahifiJosé Oscar Romero MartínezNéstor Thome

subject

Matemàtica aplicadaQuantitative Biology::BiomoleculesLinear combinationsQuantitative Biology::Populations and EvolutionEigenvaluesPotent matricesINGENIERIA TELEMATICAMATEMATICA APLICADAMatrius (Matemàtica)Involutory matricesQuantitative Biology::Cell Behavior

description

In this paper, we deal with {K, s + 1}-potent matrices. These matrices generalize all the following classes of matrices: k-potent matrices, periodic matrices, idempotent matrices, involutory matrices, centrosymmetric matrices, mirrorsymmetric matrices, circulant matrices, among others. Several applications of these classes of matrices can be found in the literature. We develop algorithms in order to compute {K, s + 1}-potent matrices and {K, s + 1}-potent linear combinations of {K, s + 1}-potent matrices. In addition, some examples are presented in order to show the numerical performance of the method. (C) 2012 Elsevier B.V. All rights reserved.

10.1016/j.cam.2012.01.019http://hdl.handle.net/10550/57746