6533b862fe1ef96bd12c60ca
RESEARCH PRODUCT
Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al
Robert J. CavaPhilipp GütlichGerhard JakobB. MühlingJürgen EnslingClaudia FelserT. Blocksubject
MagnetoresistanceCondensed matter physicsSpintronicsChemistryVan Hove singularityengineering.materialCondensed Matter PhysicsHeusler compoundElectronic Optical and Magnetic MaterialsMagnetic fieldInorganic ChemistryCondensed Matter::Materials ScienceParamagnetismMagnetizationFerromagnetismMaterials ChemistryCeramics and CompositesengineeringCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical Chemistrydescription
Abstract Materials, which display large changes in resistivity in response to an applied magnetic field (magnetoresistance) are currently of great interest due to their potential for applications in magnetic sensors, magnetic random access memories, and spintronics. Guided by striking features in the electronic structure of several magnetic compounds, we prepared the Heusler compound Co2Cr0.6Fe0.4Al. Based on our band structure calculations, we have chosen this composition in order to obtain a half-metallic ferromagnet with a van Hove singularity in the vicinity of the Fermi energy in the majority spin channel and a gap in the minority spin channel. We find a magnetoresistive effect of 30% in a small magnetic field of 0.1 T at room temperature. This demonstrates the feasibility of a cheap and simple magnetic sensor based on polycrystalline, intermetallic material.
year | journal | country | edition | language |
---|---|---|---|---|
2003-12-01 | Journal of Solid State Chemistry |