0000000000023014
AUTHOR
Robert J. Cava
The Electronic Structure of Hexagonal BaCoO3
Abstract TB–LMTO–ASA band structure calculations within the local spin density approximation have been performed to explain the magnetic and transport properties of BaCoO3. The calculations predict a magnetic and metallic ground state as energetically favored. BaCoO3 shows no long-range magnetic ordering, however, and only poor conductivity. The magnetic energy is low and the compound shows glassy susceptibility behavior at low temperatures. From the band structure we find Mott–Hubbard localization to be unlikely, and instead propose Anderson localization as a possible origin of the observed behavior. Calculations on slightly distorted structures exclude the possibility of a Peierls distort…
Structure and superconductivity in LnNi2B2C: comparison of calculation and experiment
Abstract The experimental relation between the superconducting transition temperature ( T c ) and lattice size for the lanthanide nickel borocarbides is clarified. The electronic density of states (DOS) at the Fermi energy is calculated by the LMTO method for selected non-magnetic lanthanides. The T c and the DOS are both shown to scale in the same way with a structural parameter that characterizes the bond angle in the NiB 4 tetrahedra. The results strongly support arguments that the suppression of superconductivity on going from smaller to larger lanthanides in the quaternary nickel borocarbides is structurally driven. A structure– T c relationship of this type is unusual for intermetalli…
Ni-based superconductor: Heusler compoundZrNi2Ga
This work reports on the novel Heusler superconductor ZrNi2Ga. Compared to other nickel-based superconductors with Heusler structure, ZrNi2Ga exhibits a relatively high superconducting transition temperature of Tc=2.9 K and an upper critical field of 1.5 T. Electronic structure calculations show that this relatively high transition temperature is caused by a van Hove singularity, which leads to an enhanced density of states at the Fermi energy. The van Hove singularity originates from a higher order valence instability at the L-point in the electronic structure. The enhanced density of states at the Fermi level was confirmed by specific heat and susceptibility measurements. Although many He…
Electronic structure of two crystallographic forms ofBaRuO3
Electronic structure calculations have been performed to explain the difference in the electronic properties of two crystallographic forms of ${\mathrm{BaRuO}}_{3}.$ The calculations can explain the qualitatively different resistivities of isoelectronic $4H$- and $9R$-${\mathrm{BaRuO}}_{3}$ below 100 K. The difference in symmetry between the hexagonal four-layer ${\mathrm{BaRuO}}_{3}$ and the rhombohedral nine-layer compound allows the formation of a gap for the later. The electronic structure of these hexagonal perovskites is compared with the more familiar cubic perovskite ${\mathrm{CaRuO}}_{3}.$
The effect of Fe doping on superconductivity in ZrRuP
Abstract This work reports the structure and superconducting properties of the superconductor ZrRuP doped with Fe; the ZrRu 1− x Fe x P solid solution was investigated by means of X-ray powder diffraction, SQUID magnetometry and Mosbauer spectroscopy. It is shown that the modification of the superconducting properties by doping with Fe is similar to the effect of chemical pressure and that the Fe doped compounds do not show any magnetic ordering.
Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe(1.01)Se.
In this Letter we show that superconducting ${\mathrm{Fe}}_{1.01}\mathrm{Se}$ undergoes a structural transition at 90 K from a tetragonal to an orthorhombic phase but that nonsuperconducting ${\mathrm{Fe}}_{1.03}\mathrm{Se}$ does not. High resolution electron microscopy at low temperatures further reveals an unexpected additional modulation of the crystal structure of the superconducting phase that involves displacements of the Fe atoms, and that the nonsuperconducting composition shows a different, complex nanometer-scale structural modulation. Finally, we show that magnetism is not the driving force for the phase transition in the superconducting phase.
Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure
The temperature and pressure dependence of the partial density of phonon states (phonon-DOS) of iron atoms in superconducting ${\text{Fe}}_{1.01}\text{Se}$ was studied by $^{57}\text{F}\text{e}$ nuclear inelastic scattering. The high-energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features toward higher energies by $\ensuremath{\sim}4\mathrm{%}$ with decreasing temperature from 296 to 10 K was found. However, no detectable change at the tetragonal--orthorhombic phase transition around 100 K was observed. Application of a pressure of 6.7 GPa, connected with an increase in the superconducting temper…
Pressure-restored superconductivity in Cu-substituted FeSe
Copper doping of FeSe destroys its superconductivity at ambient pressure, even at low doping levels. Here we report the pressure-dependent transport and structural properties of Fe${}_{1.01\ensuremath{-}x}$Cu${}_{x}$Se with 3$%$ and 4$%$ Cu doping and find that the superconductivity is restored. Metallic resistivity behavior, absent in Cu-doped FeSe, is also restored. At the low pressure of 1.5 GPa, superconductivity is seen at 6 K for 4$%$ Cu doping, somewhat lower than the 8 K ${T}_{c}$ of undoped FeSe. ${T}_{c}$ reaches its maximum of 31.3 K at 7.8 GPa, lower than the maximum superconducting temperature in the undoped material under pressure (${T}_{c}$ max of 37 K) but still very high. X…
Crystal structure and physical properties of Mg6Cu16Si7-type M6Ni16Si7, for M=Mg, Sc, Ti, Nb, and Ta
Five compounds were investigated for magnetic character and superconductivity, all with non-magnetic nickel and band structures containing flat bands and steep bands. The syntheses and crystal structures, refined by powder X-ray diffraction, are reported for M{sub 6}Ni{sub 16}Si{sub 7}, where M = Mg, Sc, Ti, Nb, and Ta. All compounds form in the Mg{sub 6}Cu{sub 16}Si{sub 7} structure type. Resistance measurements are also reported on M{sub 6}Ni{sub 16}Si{sub 7} (M = Mg, Sc, Ti, and Nb) down to 0.3 K, with all four showing metallic conductivity. No superconductivity is observed. Magnetization measurements for all compounds reveal essentially temperature independent paramagnetism, with a tend…
Large negative magnetoresistance effects in Co2Cr0.6Fe0.4Al
Abstract Materials, which display large changes in resistivity in response to an applied magnetic field (magnetoresistance) are currently of great interest due to their potential for applications in magnetic sensors, magnetic random access memories, and spintronics. Guided by striking features in the electronic structure of several magnetic compounds, we prepared the Heusler compound Co2Cr0.6Fe0.4Al. Based on our band structure calculations, we have chosen this composition in order to obtain a half-metallic ferromagnet with a van Hove singularity in the vicinity of the Fermi energy in the majority spin channel and a gap in the minority spin channel. We find a magnetoresistive effect of 30% …
Extreme sensitivity of superconductivity to stoichiometry in Fe1+?Se
The recently discovered iron arsenide superconductors appear to display a universal set of characteristic features, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in Fe1+?Se, which can be considered the parent compound of the superconducting arsenide family, is destroyed by very small changes in stoichiometry. Further, we show that nonsuperconducting Fe1+?Se is not magnetically ordered down to 5 K. These results suggest that robust superconductivity and immediate instability against an ordered magnetic state should not be considered as intrinsic characteristics of iron-based superco…
Effect of pressure on superconductivity in NaAlSi
The ternary superconductor NaAlSi, isostructural with LiFeAs, the ``111'' iron pnictide superconductor, is investigated under pressure. The structure remains stable up to 15 GPa. Resistivity and susceptibility measurements show an increase of ${T}_{c}$ up to 2 GPa, followed by a decrease until superconductivity disappears at 4.8 GPa. Band structure calculations show that pressure should have a negligible effect on the electronic structure and the Fermi surface and thus the disappearance of superconductivity under pressure must have a different origin. We compare the electronic structure of NaAlSi under pressure with that of nonsuperconducting isostructural NaAlGe.
Superconductivity in the Heusler Family of Intermetallics
Several physical properties of the superconducting Heusler compounds, focusing on two systems (Y, Lu, Sc)Pd2Sn and APd2M, where A=Hf, Zr and M=Al, In, are summarized and compared. The analysis of the data shows the importance of the electron-phonon coupling for superconductivity in this family. We report the superconducting parameters of YPd2Sn, which has the highest Tc among all known Heusler superconductors.
Future directions in solid state chemistry: report of the NSF-sponsored workshop
Abstract A long-established area of scientific excellence in Europe, solid state chemistry has emerged in the US in the past two decades as a field experiencing rapid growth and development. At its core, it is an interdisciplinary melding of chemistry, physics, engineering, and materials science, as it focuses on the design, synthesis and structural characterization of new chemical compounds and characterization of their physical properties. As a consequence of this inherently interdisciplinary character, the solid state chemistry community is highly open to the influx of new ideas and directions. The inclusionary character of the field’s culture has been a significant factor in its continu…