6533b862fe1ef96bd12c625c
RESEARCH PRODUCT
Symmetry and Topology in Antiferromagnetic Spintronics
Libor ŠMejkalLibor ŠMejkalLibor ŠMejkalTomas JungwirthTomas Jungwirthsubject
PhysicsSuperconductivityField (physics)SpintronicsHeterojunction02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyTopology01 natural sciencesSymmetry (physics)Condensed Matter::Materials ScienceHall effect0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyTopology (chemistry)description
Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding Neel spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |