6533b862fe1ef96bd12c62d8

RESEARCH PRODUCT

Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.

M. Del OlmoMercè Gomar-alba

subject

0301 basic medicineSaccharomyces cerevisiae ProteinsChromosomal Proteins Non-HistoneResponse elementGenes FungalRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistry03 medical and health sciencesOpen Reading FramesOsmotic PressureRNA Processing Post-TranscriptionalPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsGeneral transcription factorNuclear ProteinsPromoterCell BiologyDNA-Binding Proteins030104 developmental biologybiology.proteinTranscription factor II FTranscription factor II ETranscription factor II DTranscriptional Elongation FactorsProtein BindingTranscription Factors

description

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 and several proteins involved in transcriptional and posttranscriptional processes: for example, transcription co-activator Sub1 and elongation complex Spt4/5. The results presented in this work demonstrate that Hot1 enrichment is not detected through the coding regions of its target genes and rule out a direct role in transcription elongation. Instead, other data presented herein indicate a key function of the Hot1 transcription factor in the recruitment of these proteins to the promoter or the 5′-coding region of the genes under its control.

10.1042/bcj20160463https://pubmed.ncbi.nlm.nih.gov/27480106