0000000000144543

AUTHOR

Mercè Gomar-alba

0000-0002-7210-0364

showing 9 related works from this author

Nuclear Pore Complex Acetylation Regulates mRNA Export and Cell Cycle Commitment in Budding Yeast

2021

AbstractNuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyl-transferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits to the nuclear basket the mRNA export factor Sac3, the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex. Esa1-dependent nuclear export of mRNAs promotes entry into S phase, and is inhibited by the Hos3 deacety…

0303 health sciencesCell divisionChemistry[SDV]Life Sciences [q-bio]Cell cycleCell biology03 medical and health sciences0302 clinical medicineCytoplasmTranscription (biology)AcetylationGene expressionNuclear poreNuclear export signal030217 neurology & neurosurgery030304 developmental biology
researchProduct

Dissection of the elements of osmotic stress response transcription factor Hot1 involved in the interaction with MAPK Hog1 and in the activation of t…

2013

Abstract The response to hyperosmotic stress is mediated by the HOG pathway. The MAP kinase Hog1 activates several transcription factors, regulates chromatin-modifying enzymes and, through its interaction with RNA polymerase II, it directs this enzyme to osmotic stress-controlled genes. For such targeting, this kinase requires the interaction with transcription factors Hot1 and Sko1. However, phosphorylation of these proteins by Hog1 is not required for their functionality. In this study, we aim to identify the Hot1 elements involved in Hog1-binding and in the activation of transcription. Two-hybrid experiments demonstrated that the Hot1 sequence between amino acids 340 and 534 and the CD e…

Chromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsTranscription GeneticResponse elementBiophysicsRNA polymerase IIE-boxSaccharomyces cerevisiaeReal-Time Polymerase Chain ReactionResponse ElementsBiochemistryOsmoregulationStructural BiologyGene Expression Regulation FungalGeneticsImmunoprecipitationRNA MessengerPhosphorylationPromoter Regions GeneticMolecular BiologyTranscription factorRNA polymerase II holoenzymeGeneral transcription factorbiologyReverse Transcriptase Polymerase Chain ReactionChromatinBiochemistrybiology.proteinTranscription factor II DMitogen-Activated Protein KinasesTranscription factor II BProtein BindingTranscription FactorsBiochimica et biophysica acta
researchProduct

Whi7 is an unstable cell-cycle repressor of the Start transcriptional program

2017

Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCFGrr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a ge…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticCell divisionScienceGeneral Physics and AstronomyRepressorSaccharomyces cerevisiaeBiologyArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesCyclinsGene Expression Regulation Fungallcsh:ScienceGeneticsRegulation of gene expressionCyclin-dependent kinase 1MultidisciplinaryYY1QPromoterCell Cycle CheckpointsGeneral ChemistryCell cycleRepressor Proteins030104 developmental biologyGATAD2Blcsh:QNature Communications
researchProduct

The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress.

2012

Abstract Background While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations. Results In this work …

Chromatin ImmunoprecipitationTranslation<it>Saccharomyces cerevisiae</it>Saccharomyces cerevisiae Proteinslcsh:QH426-470Monosaccharide Transport ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiaeBiologyGene YHR087WHog1pTranscripció genèticaEukaryotic translationStress PhysiologicalPolysomeGene Expression Regulation FungalGene expressionProtein biosynthesisHigh glucose osmotic stresslcsh:QH573-671Transcription factorMolecular BiologyRegulation of gene expressionGenetic transcriptionlcsh:CytologyComputational BiologyTranslation (biology)biology.organism_classificationBlotting NorthernExpressió gènicaYeastlcsh:GeneticsGlucoseBiochemistryMicroscopy FluorescencePolyribosomesProtein BiosynthesisPolysomesGene <it>YHR087W</it>Gene expressionLlevatsMitogen-Activated Protein KinasesHot1pTranscription FactorsResearch ArticleBMC molecular biology
researchProduct

The C-terminal region of the Hot1 transcription factor binds GGGACAAA-related sequences in the promoter of its target genes

2015

Response to hyperosmotic stress in the yeast Saccharomyces cerevisiae involves the participation of the general stress response mediated by Msn2/4 transcription factors and the HOG pathway. One of the transcription factors activated through this pathway is Hot1, which contributes to the control of the expression of several genes involved in glycerol synthesis and flux, or in other functions related to adaptation to adverse conditions. This work provides new data about the interaction mechanism of this transcription factor with DNA. By means of one-hybrid and electrophoretic mobility assays, we demonstrate that the C-terminal region, which corresponds to amino acids 610-719, is the DNA-bindi…

Saccharomyces cerevisiae ProteinsRecombinant Fusion ProteinsGenes FungalMolecular Sequence DataResponse elementBiophysicsE-boxSequence alignmentSaccharomyces cerevisiaeBiologyBiochemistryConserved sequenceOsmoregulationStructural BiologyGene Expression Regulation FungalGeneticsComputer SimulationAmino Acid SequenceDNA FungalPromoter Regions GeneticMolecular BiologyTranscription factorConserved SequenceSequence DeletionCis-regulatory moduleGeneticsBinding SitesBase SequenceSequence Homology Amino AcidMembrane Transport ProteinsPromoterDNA-binding domainProtein Structure TertiaryMutationSequence AlignmentProtein BindingTranscription FactorsBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions.

2015

Yeast cells can be affected by several causes of osmotic stress, such as high salt, sorbitol or glucose concentrations. The last condition is particularly interesting during natural processes where this microorganism participates. Response to osmostress requires the HOG (High Osmolarity Glycerol) pathway and several transcription factors, including Hot1, which plays a key role in high glucose concentrations. In this work, we describe how the yeast response to osmotic stress shows differences in accordance with the stress agent responsible for it. Compared with other conditions, under high glucose stress, delocalization of MAPK (Mitogen-Activated Protein Kinase) Hog1 is slower, induction of …

Snf3Saccharomyces cerevisiae ProteinsOsmotic shockTranscription GeneticSaccharomyces cerevisiaeChitinSaccharomyces cerevisiaeOsmosisApplied Microbiology and BiotechnologyMicrobiologychemistry.chemical_compoundOsmotic PressureGene Expression Regulation FungalSorbitolProtein kinase AbiologyGlycogenEthanolBenzenesulfonatesOsmolar ConcentrationGeneral Medicinebiology.organism_classificationYeastDNA-Binding ProteinsRepressor ProteinsBasic-Leucine Zipper Transcription FactorsGlucosechemistryBiochemistrySorbitolMitogen-Activated Protein KinasesTranscription FactorsFEMS yeast research
researchProduct

Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.

2016

Hyperosmotic stress response involves the adaptative mechanisms needed for cell survival. Under high osmolarity conditions, many stress response genes are activated by several unrelated transcription factors that are controlled by the Hog1 kinase. Osmostress transcription factor Hot1 regulates the expression of several genes involved in glycerol biosynthesis, and the presence of this transcription factor in their promoters is essential for RNApol II recruitment. The physical association between Hog1 and Hot1 activates this transcription factor and directs the RNA polymerase II localization at these promoters. We, herein, demonstrate that physical and genetic interactions exist between Hot1 …

0301 basic medicineSaccharomyces cerevisiae ProteinsChromosomal Proteins Non-HistoneResponse elementGenes FungalRNA polymerase IISaccharomyces cerevisiaeBiologyBiochemistry03 medical and health sciencesOpen Reading FramesOsmotic PressureRNA Processing Post-TranscriptionalPromoter Regions GeneticMolecular BiologyRNA polymerase II holoenzymeGeneticsGeneral transcription factorNuclear ProteinsPromoterCell BiologyDNA-Binding Proteins030104 developmental biologybiology.proteinTranscription factor II FTranscription factor II ETranscription factor II DTranscriptional Elongation FactorsProtein BindingTranscription FactorsThe Biochemical journal
researchProduct

Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions.

2010

One of the stress conditions that can affect Saccharomyces cerevisiae cells during their growth is osmotic stress. Under particular environments (for instance, during the production of alcoholic beverages) yeasts have to cope with osmotic stress caused by high sugar concentrations. Although the molecular changes and pathways involved in the response to saline or sorbitol stress are widely understood, less is known about how cells respond to high sugar concentrations. In this work we present a comprehensive study of the response to this form of stress which indicates important transcriptomic changes, especially in terms of the genes involved in both stress response and respiration, and the i…

Saccharomyces cerevisiae ProteinsOsmotic shockProteomeMutantSaccharomyces cerevisiaeWineSaccharomyces cerevisiaeBiologyMicrobiologychemistry.chemical_compoundStress PhysiologicalGene Expression Regulation FungalGene expressionPhosphorylationOligonucleotide Array Sequence AnalysisGene Expression ProfilingRNA FungalGeneral Medicinebiology.organism_classificationYeastGlucosechemistryBiochemistryMolecular ResponseProteomeMutationSorbitolMitogen-Activated Protein KinasesFood ScienceInternational journal of food microbiology
researchProduct

The budding yeast Start repressor Whi7 differs in regulation from Whi5, emerging as a major cell cycle brake in response to stress

2020

ABSTRACT Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not share…

Saccharomyces cerevisiae ProteinsCell division[SDV]Life Sciences [q-bio]RepressorSaccharomyces cerevisiaeBiologyCell cycleCicle cel·lularStress13503 medical and health sciences0302 clinical medicineWhi7Gene Expression Regulation FungalmedicineWhi5030304 developmental biology0303 health sciencesRetinoblastomaCèl·lules eucariotesPromoterCell BiologyCell cycleSubcellular localizationmedicine.diseaseStartBudding yeastCell biologyRepressor ProteinsDecision points[SDV] Life Sciences [q-bio]SaccharomycetalesCell Division030217 neurology & neurosurgeryResearch Article
researchProduct