6533b862fe1ef96bd12c6470
RESEARCH PRODUCT
Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye
Tommi K. HakalaTommi K. HakalaSvitlana BaievaJ. Jussi Topparisubject
Materials scienceNanochemistryPhysics::Opticsdispersion curve02 engineering and technology01 natural sciencesMolecular physicschemistry.chemical_compoundOpticsMaterials Science(all)Dispersion relationstrong coupling0103 physical sciencesDispersion (optics)General Materials Science010306 general physicsReflectometryRabi splittingNano Expressbusiness.industrySulforhodamine 101Surface plasmon021001 nanoscience & nanotechnologySulforhodamine 101Condensed Matter PhysicsSurface plasmon polariton3. Good healthchemistrysurface plasmon polariton0210 nano-technologybusinessLocalized surface plasmondescription
We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilayer structures with a great agreement with the experiments. Detection of the scattered radiation after the propagation provides another way to obtain the dispersion relation of the surface plasmon polaritons and, thus, provides insight into dynamics of the surface plasmon polariton/dye interaction, beyond the refrectometry measurements. PACS: 42.50.Hz, 33.80.-b, 78.67.-n
year | journal | country | edition | language |
---|---|---|---|---|
2011-09-16 | Nanoscale Research Letters |