6533b862fe1ef96bd12c6552

RESEARCH PRODUCT

FastEMD–CCA algorithm for unsupervised and fast removal of eyeblink artifacts from electroencephalogram

Christophe StolzAshvaany EgambaramAshvaany EgambaramEric FauvetTahamina BegumNasreen BadruddinVijanth S. Asirvadam

subject

Artifact (error)Cross-correlationmedicine.diagnostic_testComputer science0206 medical engineeringBiomedical EngineeringWord error rateHealth Informatics02 engineering and technologyElectroencephalography020601 biomedical engineeringHilbert–Huang transform[SPI]Engineering Sciences [physics]03 medical and health sciences0302 clinical medicineSignal ProcessingmedicineSpline interpolationAlgorithm030217 neurology & neurosurgeryInterpolationBrain–computer interface

description

Abstract Online detection and removal of eye blink (EB) artifacts from electroencephalogram (EEG) would be very useful in medical diagnosis and brain computer interface (BCI). In this work, approaches that combine unsupervised eyeblink artifact detection with empirical mode decomposition (EMD), and canonical correlation analysis (CCA), are proposed to automatically identify eyeblink artifacts and remove them in an online manner. First eyeblink artifact regions are automatically identified and an eyeblink artifact template is extracted via EMD, which incorporates an alternate interpolation technique, the Akima spline interpolation. The removal of eyeblink artifact components relies on the elimination of EEG canonical components obtained through CCA, based on cross correlation with the extracted eyeblink artifact template. The proposed algorithm is evaluated and analyzed with respect to its ability in removing eyeblink artifacts and retaining neural information of the EEG signals. Analysis proved that the proposed algorithm, FastEMD–CCA, is efficacious in eyeblink artifact removal with an average accuracy, sensitivity, specificity and error rate of 97.9%, 97.65%, 99.22% and 2.1% respectively. The algorithm is able to clean and remove eyeblink artifacts from a 14-channel EEG of length 1 s, at an average time of 63 ms. This makes it a feasible solution for applications requiring online removal of eyeblink artifacts.

https://doi.org/10.1016/j.bspc.2019.101692