6533b862fe1ef96bd12c75fc

RESEARCH PRODUCT

Probabilistic interpretation of the Calderón problem

Petteri PiiroinenMartin Simon

subject

Control and OptimizationStochastic processComputer science010102 general mathematicsProbabilistic logicBoundary (topology)Inverse problem01 natural sciencesDirichlet distributionInterpretation (model theory)010104 statistics & probabilitysymbols.namesakeModeling and SimulationNeumann boundary conditionsymbolsDiscrete Mathematics and CombinatoricsApplied mathematics0101 mathematicsAnalysisTRACE (psycholinguistics)

description

In this paper, we use the theory of symmetric Dirichlet forms to give a probabilistic interpretation of Calderon's inverse conductivity problem in terms of reflecting diffusion processes and their corresponding boundary trace processes. This probabilistic interpretation comes in three equivalent formulations which open up novel perspectives on the classical question of unique determinability of conductivities from boundary data. We aim to make this work accessible to both readers with a background in stochastic process theory as well as researchers working on deterministic methods in inverse problems.

https://doi.org/10.3934/ipi.2017026